h-PRINCIPLE FOR STRATIFIED SPACES
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ABSTRACT. We extend Gromov and Eliashberg-Mishachev’s h—principle on
manifolds to stratified spaces. This is done in both the sheaf-theoretic framework
of Gromov and the smooth jets framework of Eliashberg-Mishachev. The
generalization involves developing
(1) the notion of stratified continuous sheaves to extend Gromov’s theory,
(2) the notion of smooth stratified bundles to extend Eliashberg-Mishachev’s
theory.
A new feature is the role played by homotopy fiber sheaves. We show, in par-
ticular, that stratumwise flexibility of stratified continuous sheaves along with
flexibility of homotopy fiber sheaves furnishes the parametric h-principle. We
extend the Eliashberg-Mishachev holonomic approximation theorem to strati-
fied spaces. We also prove a stratified analog of the Smale-Hirsch immersion
theorem.
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1. INTRODUCTION

Gromov developed the h-principle [Gro86] as a soft topological approach to
finding solutions to partial differential relations, and this was refined subsequently
by several others, notably Eliashberg-Mishachev [EM02]. These two references
[Gro86, [EM02] emphasize somewhat different points of view. While [EM02] uses the
standard terminology of differential topology in terms of jets, [Gro86] uses a more
abstract, formal sheaf-theoretic framework. The main applications of both these
approaches is to solve partial differential relations on smooth manifolds. The aim
of this paper is to extend the domain of applicability of the h-principle to smooth
stratified spaces (cf. [GMSS]).

There is one immediate difficulty that we face. Let X be a smooth stratified
space. Then, any natural notion of a tangent bundle TX (cf. Definition [2.22)) to
X gives a structure that is not a bundle in the usual sense of a topological bundle.
This leads us to the notion of stratified bundles (Definition which consist of
bundles along strata of X with appropriate gluing conditions across strata. It is
precisely this "gluing data” that distinguishes the manifold framework from the
stratified spaces framework. A prototypical example of a stratified bundle to keep
in mind is that of P : M — M/G, where M is a smooth manifold, and G is
a compact Lie group with a not necessarily free smooth action on M. Then M
admits a stratification by orbit type, where the strata Mg are indexed by closed
subgroups H < G, consisting of points with isotropy group conjugate to H. This
stratification descends to a stratification of M /G, and P : M — M/G becomes a
stratified fiber bundle. Let € M, G, be the isotropy group, and [z] = P(x). Then
the fiber of P over [z] is G/G,.

We found the sheaf-theoretic formalism of Gromov [Gro86, Ch. 2] more convenient
to address the algebraic topology issues. We refer the reader to [Gro86, Ch. 2] for
details on sheaves of quasitopological spaces, i.e. continuous sheaves. Note however
that the sheaf of sections of a stratified fiber bundle E over a stratified space X
forms something more involved than just a sheaf over a topological space, as one may
restrict F to any stratum-closure L C X and take sections thereof. We therefore
extend the sheaf-theoretic formalism of Gromov to stratified sites (Definition
and stratified sheaves (Definition over these. In cases of interest in this paper,
a stratified sheaf typically assigns a topological space to an open subset U of a
stratum closure L. Here, L ranges over strata of X. Following Gromov [Gro86|, we
call such a stratified sheaf a stratified continuous sheaf. Thus, a stratified continuous
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sheaf is a collection of continuous sheaves {F1}, one for every stratum L of X. In
this sense, stratified continuous sheaves are analogous to constructible sheaves.
Next, for every pair S < L, the data of a stratified continuous sheaf gives a
restriction map
resg : ’L%]:f — ‘/—"§,
where %ff denotes the pullback of F7 to S. A homotopy theoretic construction
that arises naturally is that of the homotopy fiber (hofib):

ﬁé = hofib(res} : isFp — F3).
Set HE = ﬁ§|5, the restriction of ﬁg to the stratum S of S C X. Thus,
HE = hofib(resk : Fr — Fs).

We shall refer to ﬁé and H% as the closed and open homotopy fiber sheaves
respectively for the pair of strata S < L. One of the aims of this paper is to find
conditions on the homotopy fiber sheaves that guarantee the h—principle for the
stratified sheaf F.

The sheaf of sections of a bundle comes naturally equipped with the compact-open
topology, and therefore constitutes a continuous sheaf. A key difference between
Gromov’s h-principle [Gro86), Section 2.2] and the present paper stems from the
fact that a stratified sheaf is a collection of sheaves, and not a single sheaf. The
difference already shows up when the base space is a simplex equipped with its
natural stratification. This change in setup was motivated by a question due to
Sullivan. In fact, this paper and its companion [MS22] were born in part by trying
to address the following two questions due to Sullivan [Sul77] and Gromov [Gro86).
After discussing smooth forms on simplices in [Sul77], Sullivan suggests the following
Example/Problem/test-question.

Question 1.1 (stratified spaces). [Sul77, p. 298] ”In the - - - cell-space abstraction
we didn’t require that cells be contractible. Thus these notions can be extended to
stratified sets-thought of inductively as obtained by attaching manifolds with boundary
with a careful statement about the geometry of the attaching map.

It would be interesting to carry this out in detail-the basic idea being that a form
should have values only on multivectors tangent to the strata.”

We interpret Question [1.1] as follows:
Question 1.2. Provide an inductive description of forms over stratified spaces.

Another source of inspiration for this paper comes from the following question
due to Gromov.

Question 1.3. [Gro86l p. 343] Can one define singular symplectic (sub) varieties?

In this paper, we address Question [I.2] by providing an inductive description of
sheaves of smooth forms over stratified spaces. In fact, we set up the more general
framework of a stratified bundle over a stratified space, and provide an inductive
description of the sheaf of sections of a stratified bundle over a stratified space.
We postpone a full treatment of Question to the companion paper [MS22], but
develop a general conceptual framework in this paper.

Having fixed the framework in terms of stratified sheaves over stratified spaces,
the main aim of the paper then boils down to extending some of the basic notions
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introduced by Gromov in [Gro86, Ch. 2] to the stratified context, and proving
the stratified h-principle using these generalizations. Two crucial concepts were
important in [Gro86, Ch. 2] for a sheaf F (of topological spaces) over a manifold V:

(1) Flexibility of F: This means that for every K C K' C V, F(K') — F(K)
is a (Serre) fibration.

(2) Diff(V)—invariance of F: This means that the action of the pseudogroup
Diff (V') of partially defined diffeomorphisms of V' lifts to an action on F.

Flexibility of sheaves is generalized to flexibility of stratified sheaves by demanding
two kinds of conditions:

(1) Stratumuwise flexibility: For every stratum S < X, the restricted sheaf F|S
(assigning F(U) only to open subsets U of ) is flexible as a sheaf over the
manifold S. Using Gromov’s work [Gro86], this hypothesis allows us to
conclude the h—principle for the restrictions of F to open strata.

(2) Flexibility across strata: For every stratum S < X, the open homotopy
fiber sheaf 7—[5 is flexible on the open stratum S. As pointed out before,
for any pair of strata S < L of X, there exist closed and open homotopy

fiber sheaves ﬁé and ’Hé respectively. Of these, the open homotopy fiber
sheaf H% is a more tractable object and is defined on the open (manifold)
stratum S. Hé is the key mew player introduced in this paper in the context
of stratified spaces. No analog exists in the smooth manifold context. It is
the sheaf HL that encodes ”gluing data” across the pair of strata S, L.

We establish (Theorem [4.42)) that if (1) and (2) holds, then F satisfies the
h—principle.

The condition of Diff (V')—invariance in [Gro86] is generalized to invariance of
the stratified sheaf F under stratified diffeomorphisms (Definition . Thus, F
is StratDiff —invariant if for every pair of strata S < L of X, F|S, i¢Fr and the
restriction map res% are naturally Diff(S)—invariant.

Terminology, examples and non-examples: What we have called "stratified
bundles” have their origins in work of Thom [Tho69]. Mather [Matl2 p. 500]
defines the notion of a ”Thom map”. In this paper a stratified bundle map is a
Thom map satisfying an extra hypothesis (Definition condition (iii)) making
the notion closer to a bundle.

1) The main class of examples of stratified bundles over stratified spaces, as mentioned
earlier, consists of P : M — M /G, where M is a smooth manifold, and G is a compact
Lie group. This includes symplectic reductions [SLIT] [MMeO™07, Theorems 1.4.2,
2.4.2]. In fact, if G1, G2 admit commuting actions on M, e.g. if the G action is
on the left, and the G5 action is on the right, then there exists a stratified bundle
P : G\\M — G1\M/Gs, where G1\M itself is allowed to be a stratified space.
Thus, there are natural examples of stratified bundles of the form P : X — X/G,
where X is itself a stratified space.

2) Caveat: The reader should be warned that in the context of complex analytic
spaces, a genuine topological bundle over a stratified complex analytic space with
holomorphic total space, and fiber a complex manifold is sometimes referred to as a
stratified bundle (cf. [For10]). We use stratified bundle in a much more general sense
than this. In particular, the fibers over different strata need not be homeomorphic
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in our context.

3) Let D C V be a singular divisor in a smooth complex variety V. Let N.(D)
be a regular neighborhood, and dN, (D) its boundary. Let r : N.(D) — D be the
retraction map to the divisor. Then the restriction r|ON. (D) : ON.(D) — D is not
an example of a stratified bundle in our sense. This is because lower dimensional
strata in D have higher dimensional fibers under r|0N.(D) : 9N.(D) — D. For a
stratified bundle in our sense, the opposite happens: for instance, lower dimensional
strata in M /G have lower dimensional fibers under P : M — M/G.

1.1. Statement of results. We are now in a position to state the first main
theorem of our paper (referring to Theorem for a more precise statement).

Theorem 1.4. Let F = {F; : L < X stratum} be a stratified continuous sheaf
over a stratified space X, such that F is stratumuwise flexible, i.e. Fz|L for each
L < X 1is flexible. Further, suppose that F is infinitesimally flexible across strata,
i.e. each open homotopy fiber sheaf HY is flevible. Then F satisfies the parametric
h—principle.

Gromov deduces the h-principle from the homotopy-theoretic condition of flexibil-
ity for sheaves, notably over manifolds [Gro86, p.76]. Theorem is the stratified
analog of Gromov’s theorem: the underlying space is replaced by a stratified space,
and sheaves are replaced by stratified sheaves.

The following theorem of Gromov connects flexibility and microflexibility [Gro86l
Ch. 2.2].

Theorem 1.5. [Gro86L p. 78] Let Y = V xR and let I1 : Y — V' denote the
projection onto the first factor. Let F be a microfiexible continuous sheaf over'Y
invariant under Diff (V,II). Then the restriction F|V x {0} is a flexible sheaf over
V(=V x{0}).

Let F be a microflexible Diff (V) —invariant continuous sheaf over a manifold V.
Then the restriction to an arbitrary piecewise smooth polyhedron K C V' of positive
codimension, F|K, is a flexible sheaf over K.

The stratified analog of Theorem is then furnished by the following (see
Theorems and |4.49)):

Theorem 1.6. Let F = {F; : L < X stratum} be a stratified continuous sheaf
over a stratified space X, such that F is StratDiff -invariant. Further, suppose for
each stratum L < X, Fr|L is microflexible and for each pair of strata S < L < X,
HE is microfiexible. Then the restriction F|K to a stratified subspace K C X of
stratumwise positive codimension satisfies the parametric h—principle.

In Section[5] we address Sullivan’s Question [[.2] by developing a flag-like structure
for jets on stratified spaces. The main results are given by Propositions
and These results give a stratified analog of the sheaf of formal r—jets in
[EMO02] [EMO1] (see Definition giving the corresponding sheaf Strat 7"). In a
sense, Section || interpolates between the algebraic topology of Section 4] and the
differential topology of Section [0}

In Section [6, we return to the differential topological setting of jets and jet
bundles as a concrete example to which the above sheaf-theoretic theorems may be
applied. Let p: F — X be a smooth stratified bundle over a smooth stratified space
X. Then the sheaves of sections of p : E — X and their jets come with natural
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control conditions. Let F denote the stratified sheaf of controlled sections of E over
X. Then we have the following (see Theorem [6.4)).

Theorem 1.7. F is flexible, in particular it satisfies the parametric h—principle.

A caveat is in order. The continuous sheaf F is strictly smaller than the sheaf of all
sections. It is rather easy to see that the sheaf of all sections satisfies the parametric
h—principle. Theorem says that this continues to hold in the presence of control
conditions. In fact, F can be identified with the sheaf of holonomic stratified r—jets
(see Definition for the sheaf Strat J" of formal stratified r—jets), and hence
Theorem [1.7]is also true for the sheaf of holonomic stratified jets.

We establish the following stratified holonomic approximation theorem (see The-
orem , generalizing Eliashberg-Mishachev’s holonomic approximation theorem
[EMO1], Theorem 1.2.1] for manifolds (Theorem [6.11)).

Theorem 1.8. Let X be an abstractly stratified space equipped with a compatible
metric, E — X be a stratified bundle, and K C X be a relatively compact strat-
ified subspace of positive codimension. Let f € Strat J's(Op K) be a C"—regular
formal section. Then for arbitrarily small € > 0, § > 0, there exist a stratified
diffeomorphism h : X — X with

Ih —Td]|co <6,

and a stratified holonomic section f € Strat J'(Op K) such that
(1) the image h(K) is contained in the domain of definition of the section f,
(2) IIF ~ £10p h(K)co < <.
(3) f, f1Op h(K) are normally e C"-close.

We should point out that neither Theorem nor Theorem follow from
the relative holonomic approximation theorem [EMO02, Theorem 3.2.1]. The basic
issue can be illustrated in the simple case of a pair of strata S < L. Let Eg, Ey,
denote the bundles over S, L. In order to prove either of these theorems, we need to
consider eztensions of a jet (formal or holonomic) of Eg over S to a jet over a germ
of a neighborhood of S in L. This echoes the fact mentioned earlier, that in the
stratified sheaf context, the open homotopy fiber H% is a new player in the game.
Alternately, the extension may be thought of as ”gluing data” that allows us to go
between jets over S and jets over L.

A host of applications in the manifold context have been enumerated by Eliashberg-
Mishachev. All have potential generalizations to the stratified context in the light
of Theorem We give an application of our techniques at the end of Section [6.2
by showing that stratified immersions of positive codimension between stratified
spaces satisfy the h-principle (Theorem : this is the stratified analog of the
Smale-Hirsch theorem [EMO02, Chapter 8.2].

1.2. Outline of the paper. The aim of Section [2]is to set up the context of the
h-principle for stratified spaces. This section is in the spirit of [EMO02], except that
the technology is for stratified spaces in place of manifolds. We start by describing
the setup of stratified spaces following [GMS8S8| [Mat12]. Stratified spaces are recalled
in Section [2.1] and stratified maps in Section We define stratified bundles and
related notions in Section [2.3] where the basic fact we prove is the local structure
of bundle maps (Lemma and Corollary . It is well-known that locally a
stratified space looks like a product R™ x cA of Euclidean space with a cone cA
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on a compact stratified space A. Lemma [2.15] and Corollary upgrade this to
a statement about the local structure of a stratified bundle over a stratified space.
We then proceed in Section to define stratified jets, jet bundles, and formal and
holonomic sections in the stratified context.

While Section [2] ends by setting up the context of the h-principle for stratified
spaces by describing jet bundles and their sections and is in the spirit of [EM02],
Section [3[ has more of an algebraic topology flavor, and is in the spirit of [Gro86].
Here, we look at sheaves over stratified spaces. The crucial notion of a stratified
sheaf over a stratified space is introduced in Section |3.2] Flexibility conditions are
introduced in this context in Section A principal condition used in [Gro86]
is Diff-invariance of sheaves. In Section [3.3] we describe the stratified analog,
StratDiff —invariance, in the context of stratified spaces.

In Section {4 we prove one of the main theorems of the paper, Theorem m (or
Theorem above), establishing the parametric h—principle for stratified sheaves
over stratified spaces. The main idea or mnemonic may be summarized as follows:
flexibility (a precursor to the h-principle) normal to strata plus flexibility tangential
to strata furnishes the h—principle for stratified sheaves over stratified spaces. In a
sense, this is in the spirit of Goresky-Macpherson’s fundamental theorem on Morse
data [GMS8S§| on stratified spaces where total Morse data can be recovered from
normal Morse data and tangential Morse data. On the way, we establish Theorem
4.19] spelling out the connection between flexibility and the h-principle in the context
of stratified sheaves. A tool we use in Section [] is Milnor’s theory of microbundles.
This allows us to simplify Gromov’s formalism from [Gro86l Chapter 2].

In Section [4.5] we establish the connection between flexibility and microflexibility
of stratified sheaves (see Theorem [1.47). It follows (see Theorem that the
restriction of microflexible StratDiff —invariant sheaves to positive codimension
stratified subspaces satisfies the parametric h—principle.

Section [f is devoted to using microbundles and developing a homotopy model
of the Gromov diagonal normal sheaf F* for a sheaf F of controlled sections of
a stratified bundle P : E — X. In so doing, we answer Sullivan’s Question [1.2
by developing a formalism of flag-like sets. The description is hybrid in nature.
There is a tangential component given by sections along manifold strata S and
there is a normal component given by sections over the link of S in X. Since the
link A of a stratum S is itself a stratified space, the restriction of P : E — X to
P: P7Y(A) — Ais again a stratified bundle of lesser complexity; hence an inductive
description.

We return to jets and jet bundles of stratified bundles over stratified spaces in
Section [f] Theorem [6.4] establishes that the sheaf of sections of a stratified jet
bundle satisfies the parametric h—principle. We also prove the stratified analog of
Eliashberg-Mishachev’s holonomic approximation theorem in Theorem As an
application of Theorem[I.4] we establish a stratified Smale-Hirsch theorem: stratified
immersions of positive codimension between stratified spaces satisfy the h-principle

(Theorem [6.24)).

Acknowledgments: The authors thank Yasha Eliashberg for comments on an
earlier draft.
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2. SMOOTHLY STRATIFIED OBJECTS AND MAPS

2.1. Smoothly stratified spaces.

Definition 2.1. Let X be a locally compact second countable metric space and
let (I,<) be a partially ordered set. An I-decomposition of X is a locally finite
collection {Sq}acr of disjoint locally closed subsets of X such that

(1) Su is a topological manifold for all o € T
(2) X = Uye, Sa B
(3) SaNSg#0 < S, CSs <= a<p.

If X is an I-decomposed space as above, we shall call Sy, a € I, the strata of X,
and denote by ¥ the collection of strata of X indexed by I. We shall use o < 8 and
Sa < S5 interchangeably, partially ordering ¥ instead. If S, < Sg and S, # Sg we
shall write & < 8 (or Sy < Sg). Note that S, < Sg is equivalent to saying that S,
lies in the boundary

0Sp == Sp\ Sp
of Sz. For any stratum S € ¥ we define the depth of S to be
depth(S) :=sup{n : S; € ¥ such that S < 51 < --- < S,_1}.
Similarly, define the height of S to be
height(S) := sup{n : S; € £ such that S > S; > --- > S,,_1}.
We shall moreover define the depth and dimension of X respectively as

depth(X) := sup depth(S,), dim X := sup dim(S,)
acl acl
Definition 2.2. Let (S, L) be a pair of smooth (not necessarily properly) embedded
submanifolds of a smooth manifold M such that S C L.

(1) The pair (S, L) is said to satisfy Whitney condition (a) if for any sequence
{zn} C L converging to x € S such that the sequence of tangent planes
T,, L converge to a plane T C T, M, the inclusion T;S C T holds.

(2) The pair (S,L) is said to satisfy Whitney condition (b) if the following
holds.

Let {x,} C L, {yn} C S be any pair of sequences both converging to x € S
such that the tangent planes Ty L converge to some plane 7 € Ty M. Further
suppose that the secants Tny, converge to a line ¢ € T,M. Then ¢ C T.

The notions of convergence of planes and lines mentioned above are defined
locally by choosing a coordinate chart around x in M, such that the chart contains a
tail of the sequences {z,}, {yn}. It is straightforward to check that the property of
the pair (S, L) satisfying either of the above conditions is independent of the chosen
coordinate chart. See [Matl2] for a coordinate-free restatement of condition (b).
Note that condition (b) implies condition (a), since given any sequence {z,} C L
with T, L — 7 and a line ¢ C T,,S, defined in a local chart (U, z) = (R™,0) around
x, one can construct a pair of sequences {x,} C L and {y,} C S such that the
secants Z,y, converge to ¢ € T, M. Now as T, L — 7, we must have ¢ C 7 by
hypothesis of satisfying condition (b). Therefore, £ C 7. But £ C T,.S was arbitrary,
so we conclude TS C 7. Therefore, condition (a) holds.
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Definition 2.3. A Whitney stratified subset of a smooth manifold M is a subset
X C M with an I-decomposition ¥ such that every stratum in X is a smoothly
embedded submanifold of M, and any pair of strata (S,L) in 3 such that S < L
satisfies the Whitney condition (b).

Thom and Mather showed that every Whitney stratified subset of a smooth
manifold has a canonical local model akin to manifolds being locally modeled by
Euclidean spaces. This gives us an intrinsic definition of a topological Whitney
stratified set. The cone on a topological space A is denoted as cA.

Definition 2.4. [Eril9] A CS set is an I-decomposed space (X,X) such that for
any stratum S € X the following holds:

For any point x € S there exists an open neighborhood U of x in X, a chart V
around x in S, and a stratified space (A,X4) called the link of z, such that there is
a stratum-preserving homeomorphism ¢ : V x cA — U where U is given the induced
stratification from X.

Theorem 2.5. [Matl2] EFvery Whitney stratified subset of a smooth manifold is a
CS set.

Given an I-decomposed space (X, X), a tubular neighborhood system or simply,
a tube system N on X is a collection of triples (Ng, Tq, Sa)acs consisting of (for
every a € I) an open neighborhood N, of the stratum S, in X, called the tubular
neighborhood of the stratum, a retraction m, : Ny, — Sq, called the tubular projection,
and a continuous function p, : N, — [0,00) such that p1(0) = S,: pq is called the
radial function.

We now define an abstract stratification in the sense of Mather [Mat12]. It provides
a notion of a smooth stratification on an I-decomposed space (X, ¥) independent of
the ambient space it is embedded in. This is analogous to the abstract definition of
a smooth manifold using a smooth atlas rather than via an embedding.

Definition 2.6. An I-decomposed space (X,X) equipped with a tube system N
on X, denoted by the triple (X, %, N), defines an abstractly stratified space if the
following holds

(1) Each stratum S, € ¥ is a smooth manifold.

(2) For any pair o, B € I of indices such that o < B, we set Nog = No N Sp and
the restrictions of mo, and po to Nog are denoted by mog and pap respectively.
The map (Tag, Pap) : Nag — Sa X (0,00) is a submersion.

(3) For all triples «, 8, € I of indices with o < 8 < =y, the m-control condition
TafTay(T) = Tay(x) and the p-control condition pagmgy(x) = pay(x) are
satisfied whenever © € Ng, N Noy N WEVI(NQ ).

For simplicity of notation, we will often denote the tubular neighborhood of a
stratum S € ¥ in an abstractly stratified space (X, X, N') by Ngs and the associated
tubular function and radial function will be denoted by 7mg and pg. For two
strata S, L € ¥, S < L, the tubular neighborhood of S in L will be defined as
Ngr, := Ng N L and the restrictions of mg and pg to Ngp will be denoted by mgp
and pgr, respectively. Let

Ng:={z € Ns : ps(z) <e(ms(x))} C Ns,

where € : § — (0,00) is a smooth positive continuous function. We shall often use
the shorthand € > 0 if there is no scope of confusion. Ng shall usually mean NZ.
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Here, we use € to denote a function on S defining a tubular neighborhood of
S. However, for most applications, we shall need to consider the function ¢ only
on relatively compact subsets of S, where it may be taken to be a small constant,
hence this notation.

Two tube systems N' = (Ng,7s, ps)ses and N/ = (N§, 75, pls)ses on an I-
decomposed space (X,X) shall be declared equivalent if for any strata S € X, there
exists an open neighborhood S C N§ C Ng N Ng such that ng|N§ = 75| Ng and
psINE = psINE. If (X,Xx,Nx) and (Y,Xy,Ny) are two abstractly stratified
spaces and f: X — Y is a stratum-preserving homeomorphism such that the pulled
back tube system f*Ny = (f*Ng,f longo f,pso f)ses, is equivalent to Ny,
then f is said to be an isomorphism between X and Y.

Examples of stratified spaces include manifolds with corners. A product X x Y
of stratified spaces X,Y is naturally stratified with strata consisting of products of
strata of X and Y, however there is no canonically defined abstract stratification in
general. For instance, consider I x I where I = [0, 1] is stratified as a manifold with
boundary. However, if one of X or Y is a manifold, X X Y does have a canonical
abstract stratification.

Theorem 2.7. [Matl2] Any Whitney stratified subset (X,X) C M admits a tubular
neighborhood system consisting of (not necessarily properly) embedded tubular neigh-
borhoods v(S), one for each stratum S € ¥ in M. Further, there exists a projection
s : v(S) = S and radial function ps : v(S) — [0,00) such that Ng = v(S)NX.
The restrictions of ms and ps to Ns furnish a tube system N = (Ng,7s, ps)ses
which makes (X, X, N) an abstractly stratified space.

The following theorem is a version of the Whitney embedding theorem for
abstractly stratified spaces, essentially saying that every abstractly stratified space
of dimension n can be embedded in RY for N > 2n + 1 as a Whitney stratified
space, and any two such embeddings are isotopic if N > 2n + 2.

Theorem 2.8. [Nat80] Let (X, X, N) be an abstractly stratified space with dim X =
n. Then for any N > 2n + 1 there is a realization of X in RN, i.c. there evists an
embedding v : X — RY such that X' = 1(X) is a Whitney stratified subset of RV
with a stratification ' = {u(S) : S € £} and a tube system N' = (Ng,7s, ps) as in
Theorem such that
(XS N) = (XY N

is an isomorphism of abstractly stratified spaces. Moreover if N > 2n + 2 any two
such embeddings vo,t1 : X — RN are isotopic in the following sense: there is a
realization H : X x I — RN such that H(z,t) = (H(z),t) where Hy : X — RN is
a realization for all 0 <t <1 and Hy = 19, Hy = t1.

Theorem 2.9. [Gor78] Any abstractly stratified space admits o triangulation by
smoothly embedded simplices compatible with the filtration by stratum-closures

2.2. Stratified maps.

Definition 2.10. A map f: (X,Xx) — (Y, Xy) of I-decomposed spaces is said to
be a stratum-preserving map if for any S € Xx, there is a unique L € Xy such that
f(S) C L. Equivalently, for every stratum L € Xy, f~Y(L) is a disjoint union of
strata of Xx.

If (X,2x,Nx) and (Y, Xy, Ny) are abstractly stratified spaces, then a stratum-
preserving map f : X — 'Y of the underlying I-decomposed spaces is said to be a
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controlled map if for any stratum S € Xx and the corresponding unique stratum
L € Xy such that f(S) C L, the following conditions are satisfied

(1) fIS:S — L is a smooth map.
(2) There exists € > 0 such that f(Ng) C Np,.
(3) The m-control condition

f(rs(x)) = mr(f(z))

and the p-control condition

ps(@) = pL(f(z))
hold for all x € N§.

If all the conditions above except the p-control condition is satisfied, f is said to
be a weakly controlled map.

Definition 2.11. A controlled map f: (X, Xx,Nx) — (Y, 2y, Ny) is a stratified
submersion if for any stratum L € Yy and any component S € Yx of f~1(L),
fIS S = L is a submersion.

2.3. Stratified bundles.

Definition 2.12. [Matl2] Let (X,%, N) be an abstractly stratified space. A strati-
fied vector field n on X is a collection {ngs : S € ¥} where for each stratum S € X,
ns is a smooth vector field on S. The stratified vector field n will be called a con-
trolled vector field if for any pair S, L € X of strata with S < L, there exists some
€ > 0 such that for any x € Ng N L, the following conditions hold:

(1) nLpsr(z) =0.
(2) (msp)wnc(z) =ns(msw(z)).
If we simply drop the first condition, we obtain a weakly controlled vector field.

Thus, a controlled vector field in the higher dimensional stratum L is parallel to
the lower dimensional stratum S, i.e. it does not change along the radial direction
psr- This is ensured by the first condition above. It also projects ‘isomorphically’ to
the vector field in the lower dimensional stratum S. This is ensured by the second
condition above. A weakly controlled vector field in the higher dimensional stratum
L is not necessarily parallel to the lower dimensional stratum S, i.e. it is allowed
to have a radial component; however, if the radial component is subtracted from a
weakly controlled vector field, we obtain a controlled vector field.

We now define higher-dimensional controlled distributions. These will be useful
in defining stratified fiber bundles below. Note that we drop the p-control condition
in this case.

Definition 2.13. Let (X,X,N) be an abstractly stratified space. A stratified
distribution D on X is a collection {Dg : S € ¥} where for each stratum S € 3,
Dg is a smooth subbundle of the tangent bundle T'S of S. The distribution D will
be called a weakly controlled distribution if for any pair S, L € ¥ of strata with
S < L, there exists some € > 0 such that for any x € T¢N L,

(ms0)«Dr(2) = Ds(msr(2))-

Note that the dimensions of Dg, Dy, may differ for S £ L. For the next definition,
we shall need the local structure of neighborhoods Ng of strata S. By Thom’s first

isotopy lemma, Ng is a fiber bundle over S with fiber cA, where A denotes the link
of S'in X.



12 MAHAN MJ AND BALARKA SEN

Definition 2.14. A triple (E, X, p) consisting of

(1) An abstractly stratified space (X, %, N), called the base space,

(2) An abstractly stratified space (E, %, N), called the total space,
(3) A weakly controlled map p: E — X called the bundle projection,

will be called a stratified fiber bundle if

(i) For every stratum S e and the corresponding unique stratum S € ¥ such
that p(S) C S, the restriction p: S — S is a smooth fiber bundle, and

(i) The stratified distribution kerdp := {kerd(p|g) : S € X} on E is weakly
controlled.

(iii) Let p|Ng : Ng — Ng denote the restriction of p to a neighborhood Ng of
S. Let B, A denote the links of S,S respectively, so that Ng (resp. Ns)
is a bundle over S (resp. S) with fiber ¢B (resp. cA). Identify S with the
zero-section of Ng. We demand that (p|Ng)~'(S) = S.

Given a stratified fiber bundle (E, X, p), a (weakly) controlled section of p is a
(weakly) controlled map s : X — E such that po s = id.

We should point out that a stratified bundle (E, X, p) as defined above is necessar-
ily locally trivial over strata by Thom'’s second isotopy lemma, originally formulated
in [Tho69| (for a detailed proof, see [Mat12, Proposition 11.2]). Hence, we can think
of a stratified bundle as a collection {(Es,S,p) : S € ¥}, where each p: Eg — S is
a genuine topological bundle over the stratum S with fiber a stratified space. The
conditions of Definition [2.14] ensure that these bundles patch together consistently.
Condition (ii) is known as Thom’s condition (a,) in literature [Mat12, Section 11].
Condition (iii) forces the restriction p|cB of p to a cB—fiber of N(S) to land in a
cA— fiber of N (§ ) with the additional condition that the pre-image of the cone-point
ca of cA is exactly the cone-point ¢p of ¢B. This will be useful in Corollary 2.1§]|
below.

We shall sometimes use the suggestive notation p : E — X for a stratified fiber
bundle. The following lemma and its consequences (Corollary and Corollary

2.18)) give the local structure of stratified fiber bundles.

Lemma 2.15. Let (E, X,p) be a stratified fiber bundle. For any point T € E with
p(T) = x, there is an open neighborhood V of T in E, and U of x in X, equipped
with the respective induced stratifications, such that p(V) = U, and
(1) There exist abstractly stratified spaces (A, X a,Na), (B, X5, Ng) and isomor-
phisms of abstractly stratified spaces : V — cBXR"™ and ¢ : U — cAXR™
for some n > m,
(2) There exists a map [ : cB x R™ — cA x R™ which factors as f = (g, proj)
where proj : R™ — R™ denotes the projection to the first m coordinates,

making the following diagram commute:

V. —— ¢cBxR"

l l

U — cAxR™

Proof. Suppose S is the unique stratum of E containing z. Let S be the unique

stratum of X containing x. So p(S) C S. Let 7 be the tubular projection associated
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to S in E and let 7 be the tubular projection associated to .S in X. Since p|§ 'S — S
is a fiber bundle, we can choose charts O = R" around 7 in S and O 2 R™ around
z in S such that p : O — O is equivalent to the projection proj : R™ — R™ with
respect to local coordinates. Let V = 71(0) N cl(Ng) and U = 7=1(0) N cl(Ng)
for some appropriate € > 0 (here cl(—) denotes closure). Observe that 7 : U — O
is a proper stratified submersion. Choose coordinate vector fields 0y, -+, 0, on O
corresponding to local coordinates t1,- -+ ,t,,. By [Matl2 Proposition 9.1] there
exist controlled vector fields 71, - , 7, on U which commute stratumwise such
that mm; = 0; for all 1 < i < m. Let F = 7 !(z) Ncl(N5). Let ®; be the
local 1-parameter family of stratum-preserving homeomorphisms on U generated
by n;, for 0 < i < m. For any u € U, there exists a unique v € F and unique
(t1,--+ ,tm) € O, such that (®}' o &2 ... 0 ®!m)(v) = u. This gives an inverse
homeomorphism A : U — F' x O defined by

h(u) = (@, 0+ 0 ®5" 0 ®7) (1), 1, -+ ),

where wg(u) = (t1, -+ ,tm), so that t1,--- , ¢, are (implicitly) functions of w.
Now consider the commutative square

V /50

AR

U—"-0
This gives us a map to the fibered product (7,p): V — 0] xo U. Note that since
ker dp is a weakly controlled distribution on E by hypothesis, 7. ker dp, = ker dpz(.,),

for any v € V, i.e. d7 restricts to a surjection dr : ker dp, — ker dpz(,). We now
use a fact from linear algebra:

Claim 2.16. Let W1, Wy, W3, W, be vector spaces occurring in the following
commutative diagram

w, — +w,

di d
w; —2 5 Wy

where f,g,p,q are all surjective linear maps. If f restricts to a surjection f : kerp —
ker g then the induced map to the fibered product (f,p) : W1 — Wa xw, W3 is
surjective.

Proof of Claim[2.16 For any u € Wy and v € W3 such that g(u) = g(v), choose
lifts @w,v € Wy such that f(u) = v and p(¥) = v by surjectivity of f and p,
respectively. Then observe that (go f)(u—v) = q(u) — (go f)(¥) = q(u) — (gop) (V) =
q(u) — g(v) = 0 by commutativity of the diagram. Therefore, f(u — ¥) € kergq. As
f : kerp — ker q is surjective, there must be some k € kerp such that f(u —v) =
f(E). Therefore there must also be some £ € ker f such that w — v = k + £. Let
w=u—f=v+k &€ Wj. This is the desired element. O

We now return to the proof of Lemma Note that O Xo U is an abstractly
stratified space. Claimimplies (7,p): V — O X oU is a stratumwise submersion.
Therefore, there exist controlled vector fields 7; on V over n; on U for 1 <i < m,
see [Matl2l Proposition 11.5] (we pause here to record a warning that controlled
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vector fields over controlled vector fields are not controlled vector fields in the usual
sense of the word, see [Matl2 Section 11] for a careful discussion). In particular,

Tl = 8 for all 1 < i < m, where 81, . 8 are the first m coordinate vector
fields on O obtained as lifts of 1, - -+, Om by the projection p : O — O. Consider
the rest of the coordinate vector fields 8m+1, = 3 on O and let 7, M1, ,Mn DE

controlled vector fields on V' such that 7,.7; = 87; form+1<i<n.

Let 5 denote the local 1-parameter family of stratum-preserving homeomor-
phisms of V' generated by 7; for 1 <7 < n. We obtain, as before, two homeomor-
phisms hy : V — F x O given by hl( ) = (Bt o 0<I>1t1( )yt1,-- - ,t,) and

9:V — F' x O given by hg( )= (@ tmo...0 <I>1 Y(v),t1,+ -+ ,ty) by considering
the flow generated by all of 71, -+ , 7, in the first case, and the flow generated by
the first m of these, namely 71, - - - , 7, in the second case.

Here F = 7~ 4(Z) N Ng and F' = (po7)~!(2) N N%. Consider the map
¢:FxO—=F x0
Bzt tn) = (B} 0 0 B (2), tngrs -+ )

Then the following diagram commutes:

vV M, FxO

o

Vv 2, Fxo
Since 71, - - - , T, are controlled vector fields on V' over 1y, -+ , 1, on U, by [Mat12l
Proposition 11.6] there is also a commutative diagram as follows

vV Mo

pl (p,id)l

U—"4 Fxo

By combining the two commutative diagrams above, we obtain (up to change of
coordinates) an equivalence of p : V' — U with a _map F x O — F x O defined by
(2,t) — (g¢(2), p(t)). Now, observe that the map F x O — F x O, (z,t) — (g¢(2), t)
is also a stratified fiber bundle. So we can lift coordinate vector fields 51, e ,571 on
O to controlled vector fields on F x O and from there to controlled vector fields on
F x O over the aforementioned controlled vector fields. Once again, using [Mat12]
Proposition 11.6], we obtain a commutative diagram as follows

Fx0O —— FxO

Pl (go,p)l

FxO FxO

where the diagram is compatible with projections of each of the terms to 0. Therefore,
by conjugating by the isomorphism on the top horizontal arrow we obtain an
equivalence of F' x O — F, (z,t) — g¢(2) with F x O — F, (2,t) — go(z). This



h-PRINCIPLE FOR STRATIFIED SPACES 15

shows that p : V' — U is equivalent (up to reparametrization) to a genuine product
ggxp:ﬁx5—>F><O

By an application of Thom’s first isotopy lemma [Mat12, Proposition 11.1], we

identify F' 2 cA and F = ¢B where A =7 1(z)Np~1(r) and B =7"1(2) N p~1(r')

for some sufficiently small 7,7/ > 0, with the induced abstract stratification from F

and X respectively. The lemma follows. (I

We refine the conclusions of Lemma [2.15] by elaborating on the structure of the
map p. : cB — cA between the conical factors in the local trivialization

(V,U,plv) = (¢B x R",cA x R™, p. x proj)
of a stratified fiber bundle (E, X, p) furnished by Lemma
Corollary 2.17. p.: cB — cA is a stratified fiber bundle.

Proof. We know

Ppe X proj : cB x R® — ¢cA x R™
is a stratified fiber bundle, since it is equivalent to the stratified fiber bundle
p|V : V. — U by a pair of isomorphisms of abstractly stratified spaces. Then for
any stratum S of ¢cA and any stratum L of ¢B such that f(L) C S, the restriction
pe X proj : L x R™ — S x R™ is a smooth fiber bundle. In particular, p.|L: L — S
is a surjective smooth submersion.

We can arrange p. to be a proper map by choosing r,7’ > 0 appropriately in
the last part of Lemma m Therefore, p.|L is a proper surjective submersion
and hence a smooth fiber bundle by Ehresmann’s fibration theorem. Therefore,
pe : ¢cB — cA is a weakly controlled map which is a stratumwise smooth fiber bundle.
Moreover, it is straightforward to check that ker dp. is a controlled distribution on
¢B since ker d(p. x proj) is a controlled distribution on ¢B x R™ by hypothesis. This
establishes that (¢B,cA, p.) satisfies all the hypotheses in Definition and is
therefore a stratified fiber bundle. O

Corollary 2.18. The map p. : ¢cB — cA is equivalent to the cone on a map
pe : B — A between the links, by a pair of isomorphisms of the abstractly stratified
spaces cA and cB. That is, there exists a commutative diagram of the form

cB i>cB

erc lc(pg)

cA —=— cA
Proof. For concreteness, let cA = A x [0,1)/A x {0} and ¢B = B x [0,1)/B x {0},
and let us indicate the cone points as {c4} and {cp} respectively. Identify the
[0,1) factor in each with radial co-ordinates on cA, ¢B, using the radial functions
pa and pp, respectively. Let pa : cA — [0,1) denote the projection onto its radial
co-ordinate, and let ® = p4 o p..

Then ® : ¢B — [0,1) is a stratified fiber bundle with compact fibers, where the
base [0,1) has exactly two strata {0} and (0,1). Let ¢ denote the cone-point of
B. Then condition (iii) of Definition ensures that ® : ¢cB\ {¢g} — (0,1) is a
stratified fiber bundle where the base is a single stratum, and the fibers are compact.
By Thom’s first isotopy lemma [Mat12, Proposition 11.1], ® : ¢B\ {¢g} — (0,1) is
a product fibration, i.e. ¢B\ {cp} is isomorphic to B x (0, 1) as abstractly stratified
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spaces, by an isomorphism which preserves the projection to (0,1). Reparametrizing
the radial co-ordinates furnishes the conclusion. O

Let (A,X4,N4) and (B,Xp,Np) be abstractly stratified spaces. The same
argument as in Lemma and Corollary can be used to establish lifting of
stratified homotopies H : A x I — B i.e. a homotopy where, for every stratum
S € 34, there exists a unique stratum L € Xp such that H(I x S) C I x L.

Proposition 2.19. Let (E, B,p) be a stratified bundle, and H : A x [0,1] — B
be a stratified homotopy. Let hg := H|A x {0} and let ho:A— E bea lift of hg.
Then there exists a lift H:Ax [0,1] — FE such that H is a stratified homotopy,
H|A x {0} = ho and H covers H, i.e. Hop=H.

Proof. We modify the homotopy by enlarging [0, 1] slightly to (—,1 + €) and
defining H : A x (—¢,1+4¢) — B by declaring H to be constant on A x (—&,0] and
A x[1,1+¢). Tt is now possible to choose € > 0 such that H is a stratified mapping,
where A x (—&,1+ ¢) is stratified by S x (—¢,14¢); S € ¥4 being the strata of A.

Let H*E C A X (—&,1+¢) x E denote the pullback of E over A x (—¢,1 + ¢).
Since H is a stratified map, H*E is a stratified bundle over A x (—¢,1 +¢). By
projecting first to A X (—e,1 4+ ¢) and then to (—¢,1 + ¢) as in Corollary we
obtain a commutative diagram

H*E —= 5 Eyx(—g,1+¢)
Ax(—e,1+¢) Ax(—¢,14¢)

Where Ey = h{E is the pullback of the stratified fiber bundle (E, B,p) over A
under hg : A — B. The map hg : A — FE induces a map to the fibered product
H*(ho) : A — H*E.
Let ® : H*E — Ey x (—¢,1 4 ¢) denote the isomorphism above. Then, the
product homotopy with coordinates changed by @, i.e.
H=33"0(®oH*(h),t)
gives the required lift. O

A slight generalization of stratified fiber bundles is sometimes useful:

Definition 2.20. A stratumwise bundle P : E — B consists of

(1) an abstractly stratified space E-the total space,
(2) an abstractly stratified space B-the base space,
(3) a stratum-preserving map P, such that for every stratum S of B,

P|P~YS): P}(S)— S
18 a topological fiber bundle, with fiber a stratified space Fs.

Example 2.21. A product of stratified spaces is a stratumwise bundle, but not
necessarily a stratified fiber bundle.

Definition 2.22. Let (X,3,N) be an abstract C*-stratified space. By Theorem
there is a realization X' C RN such that (X', %', N") is an abstract stratified
set, where N is induced from a tubular neighborhood system (v(S),ms, ps)sesy on
the Whitney stratified set X' C R™. We define the tangent bundle T'X to be the
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union Jgesy T'S C TRY of tangent bundles to each strata of X'. This inherits a
topology from TRN = RN and an I-decomposition ¥V = {T'S, : Sy € '} per.
Letp: TX — X be the projection obtained by restricting the projection TRN —
RY to TX and composing with the inverse of the realization homeomorphism
X — X'. Define
N :=Ty(S,)NTX
to be the tube around the stratum T'S, of TX, i.e. No(}) is the intersection of TX
with the tangent bundle to the tubular neighborhood v(Sy).
The associated tubular projection 7r¢(11) = dm,, 1S defined by the restriction of the
differential
dme, : Tv(Sy) = T'Sy
to N(gl).
Finally, consider the differential of the radial function dp, : Tv(Sy) — R as
a map to the fibers of T[0,00) = [0,00) x R. Then we define the radial function
associated to the stratum TS, as

pl) = pa op+ (dpa)’.
We denote the tube system defined by these functions as NV = (N(gl), w&l), p&l))ael.
Lemma 2.23. The triple (TX, %M, NM) is an abstract C*-stratified space.

Proof. For any pair of indices o, 5 € I with a < 8, Nog = N, N Sj is a submanifold

of Sg. Hence it inherits a C*°-structure. Consider 7,5 : Nog — So and pag :

(1)

Nop — (0,00) — both C*°-maps. If ﬂl(llﬁ) and pf}lﬁ) denote the restrictions of 74 and

p,(xl) to
NS =NV NTSs = TN, N TS5 = T(Na N S5) = TNag,
then observe that 7T((115) = dm,p and psg = pas o P+ (dpap)?.

We know that for any triple of indices «, 8, € I, the following control conditions
hold:

(1) Taf © Ty = Tay

(2) Pap O Ty = Pary
Differentiating and using the chain rule on [1] and [2| we have
(3) dmap © dmgy = ATy

(4) dpaB © dﬂ-ﬁ'y = dpa'y

whenever both sides of the equations are defined. Equation [3|implies that

1 1
7D o 7l — 1)

hence (TX, %M 1)) has 7-control.
From Equation [4] we also obtain

(5) (d/’aﬁ)2 odmpy = (d/)av)Q
Since p o dmgy = Ty, We see that Equation [2 also implies
(6) (Pag ©p) 0 dTpy = pay 0P

Adding Equations and@ we see that psﬁ) owglv) = p((llﬂ). This is the desired p-control.
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Note that p&l)(z,v) = 0 if and only if p,(z) = dpa(x,v) = 0. Since po(x) = 0,
x € S,. Next write v = u +w € TRY where u is the orthogonal projection of v to
TS, under a fiberwise inner product defined on v(S,). Then

0 = dpa(z,v) = dpa(x,u) + dpa (T, w).

But dpo(x,u) = 0 since p, = 0 on S,. This forces dp,(z,w) = 0. Since p, is the
radial function on v(S,,), dp, is strictly increasing in any direction orthogonal to S,
forcing w = 0. Hence v € T, S,. Therefore (z,v) € T'S,, i.e., (p&l))*l(O) =T85,.
Finally it is straightforward to check that (ngﬁ),psﬁ)) : N(gg — Sg x (0,00) is a
submersion.

We have checked that 7(1) and p(!) are valid projection and radial functions, and
(TX, Z(l),/\/(l)) satisfies both the control conditions. The lemma follows. (I

Lemma 2.24. (Weakly) controlled sections of the projection p : TX — X are
(weakly) controlled vector fields on X (cf. Definition .

Proof. For concreteness, we prove the lemma for controlled sections and controlled
vector fields. The same proof works for weakly controlled sections and weakly
controlled vector fields. Let n: X — T'X be a controlled section of p. Then for any
stratum S C X, n|S : S — TS is a C*-section of the tangent bundle of S; let us
denote this vector field as ng. Then {ns : S € ¥} is a stratified vector field on X.
Note that since 7 is m-controlled, it follows that for any pair of strata S, L C X

with S < L, we have ﬂglg(n(w)) = n(nsr(z)). Hence (msr)«(nr(x)) = ns(msp(x)).

Moreover 7 is p-controlled, hence ng)(n(:c)) = psr(z). Now pgg(n(x)) = psr(z) +
dpsr(n(z))?, therefore dpgsy (n(x)) = 0. Equivalently, (n).psr. = 0. This verifies

that {ns : S € ¥} is indeed a controlled vector field on X. O

Proposition 2.25. Let (X,Xx,Nx) and (Y, Xy, Ny) be abstract stratified spaces
and f: X =Y be a controlled (resp. weakly controlled) map. Then the stratum-wise
differential induces a controlled (resp. weakly controlled) map df : TX — TY .

Proof. Suppose «, 3 € I is a pair of indices such that a < 8, and S,, Sg € Xx be
the corresponding pair of strata of X. Let L,,Lg € Xy be the unique strata of
Y such that f(So) C Lo and f(Sg) C Lg. Let us denote the tube system on X
associated to the pair of strata (S, Ss) by (1\70)537 wfﬂ, pfﬂ) and similarly the tube
system on Y associated to the pair of strata (L, Lg) by (Ngﬁ, 71'3;5, pgﬁ). As fisa
controlled mapping, we have

(7) fowffﬁzﬂgﬁof

(8) Pag = Pag ©

on No)fﬁ N f’l(N(fﬁ). Differentiating Equation it is immediate that df o (WX)SB) =
(ﬂ'Y)((llg o df. Differentiating Equation |8 we obtain

(9) dpls = dpls o df
Since (p o df)(z,v) = f(z) for all (z,v) € TX, we can rewrite Equation |8 as
(10) Pfﬁopngﬁopodf

Squaring both sides of Equation |§| and adding to Equation gives (p~ )((12 =
(py)glg odf. This verifies that df : (T'X, Eg),/\fg)) — (TY, Zg,l),./\/yl)) is a controlled
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map. It is clear from the proof that if f is only weakly controlled, df is also weakly
controlled. (]

2.4. Stratified jets. Let (X,3,N) be an abstract stratified space. Then the
tangent bundle (77X, XM N (V) is also an abstractly stratified space by Lemma
[2:23] We can now iterate this construction to define the k-fold iterated tangent
bundle 7*) X . However, the radial functions become rather unwieldy to work with.
We redefine the control structure on T X as follows:

Definition 2.26 (Iterated tangent bundle). Let (X, X, N) be an abstract stratified
space and we choose a realization X' C RN such that (X', %', N is an abstract strat-
ified set. Here, N' is induced from a tubular neighborhood system (v(S), s, ps)ses
on the Whitney stratified set X' C RY.

Let T®) X be the union Usesy THMS ¢ TWRN of the k-fold iterated tangent
bundles to each stratum of X'. Then T®) X inherits a topology from TFRN = R2*N
and an I-decomposition ©F) = (TS . S, € ¥} er. Let

p® TR X & X

be the projection obtained from restricting T®RN — RN to X' and composing with
the inverse of the realization homeomorphism X — X'.
Define
NF .= T1® (s, )ynT® X

to be the tube around the stratum T®) S, of T®) X. Let the restriction of the k-th
derivative

d® 7y : T®y(S,) — TH S,

to Nc(yk) be the associated tubular projection W&k) =d® . Let d(i)pa : T(i)z/(Sa) —
R be the i-th derivative of the radial function p,. We define the radial function
associated to the stratum TS, of T X to be

P = pa o™ + (dpa)? + -+ (AW pa)?

restricted to Ta(k). This defines a tube system N'*) = (To(ék),ﬂ&k),p&k))ael and
(TR X, 50 N (R)Y s abstractly stratified.

Definition 2.27. Let (E,X,p) be a stratified fiber bundle and U C X be an
open subset with the canonical abstract stratification inherited from X. We define
a formal (weakly) controlled E-valued r-jet over U to be an (r + 1)-tuple
(50,81, ,8r) such that s, : T®U — TWE is a (weakly) controlled section of
(T®E, TR X, d*)p) over T®U c T®X for all 0 < k < r and each s, covers
sk in the sense that the following diagram commutes:

E TE TOE ¢+—— ... «—— TWE
N O O
U TU TOU ¢«—— .. «—— TU

An extended and modified notion of stratified jets will be given later in Definition
before we prove the h—principle for jet sheaves. The sheaf of formal (weakly)
controlled E-valued r-jets, denoted as Jz (Jg ,,)), assigns to each open subset
U C X the set Jg(U) (Jg,,(U))) of all formal (weakly) controlled E-valued r-jets
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over U. Let I'g (I'g ) denote the sheaf of (weakly) controlled local sections of
(E, X,p). Then there is similarly a morphism of sheaves

(11) J Ty — Tk

(J; : FE,w — jET‘,w)
which sends a (weakly) controlled local section s € T'g(U) of (E, X, p) over an open
subset U C X to the formal (weakly) controlled E-valued r-jet

J's = (s,ds,dPs, -, d"s) e Th(U)
(s = (s,ds,d?Ps,--- ,d"s) e Th.wU)).
The image of this morphism is a subsheaf Hf; of 73 (H} ,, of Jg ,,) which we shall
call the (weakly) controlled sheaf of holonomic F-valued r-jets on X.
Let T E be equipped with metrics distg“) respecting the topology for all 0 < k <
7. Then for any open subset U C X we can equip Jz(U) (or Jg ,,(U)) with a metric

topology: we shall call two (weakly) controlled E-valued r-jets J = (sg, 81, ,8y)
and J' = (s, 8}, ,s)) over U are e-close if

sup dist(;)(sk(x), sp(z)) <eforall0<k<r
zeU

3. FLEXIBILITY, DIFF-INVARIANCE

Two crucial notions that come into play in Gromov’s sheaf-theoretic h-principle[Gro86l,
Section 2.2] over manifolds are
(1) flexibility,
(2) Diff-invariance.
The purpose of this section is to extend these two notions both at the level of the
base space as well as that of the nature of the sheaf. Thus, we shall

(1) replace the base manifold by a stratified space,
(2) replace the sheaf of quasi-topological spaces in [Gro86] by stratified sheaves,

and extend Gromov’s notions of flexibility and Diff-invariance to this setup.

3.1. Flexibility of sheaves. Following Gromov [Gro86, Ch. 2], we shall refer to
sheaves of quasitopological spaces as continuous sheaves. We collect together in this
subsection, some basic notions from [Gro86, Ch. 2], and facts about continuous
sheaves.

Definition 3.1. [Gro86, p. 40] Let «: A — A’ be a continuous map of quasitopo-
logical spaces. Consider a continuous map ¢ : P — A of a compact polyhedron P
into A. Let ¢’ =ao¢. Let ' : P x [0,1] — A’ be such that ®'|P x {0} = ¢'.

The map « is called a (Serre) fibration if for all such polyhedra P, maps ¢ : P — A
and homotopies ®' of ¢', &' lifts to a map ® : P x[0,1] — A such that ®|Px {0} = ¢
and cco ® = P’.

The map « is called a (Serre) microfibration if for all such polyhedra P, maps
¢ : P — A and homotopies ®' of ¢/, there exists 0 < e < 1 (where e may depend
on P,¢, @) and a map ® : P x [0,e] — A, such that ®|P x {0} = ¢ and a0 ® =
O'|P x [0,¢].

Henceforth, by fibration (resp. microfibration), we shall mean a Serre fibration
(resp. microfibration) of quasitopological spaces.
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Definition 3.2. Let X be locally compact Hausdorff. A continuous sheaf F on X
is flexible (resp. microflexible) if for all compact K C K', F(K') — F(K) is a
fibration (resp. microfibration).

Example 3.3. Let f : Y — X be surjective, and F be the continuous sheaf of

sections associated to f, equipped with the quasitopology on mapping spaces. Then
F is flexible.

Theorem 3.4. [Gro86, Theorem B, p. 77] Let ® : F — G be a morphism of flexible
sheaves over a finite dimensional locally compact Hausdorff space X. Then ® is a
local weak homotopy equivalence if and only if ® is a weak homotopy equivalence,
i.e. &, F, — G, is a weak homotopy equivalence for all x € X if and only if
Oy F(U) = G(U) is a weak homotopy equivalence for all U C X open.

3.2. Stratified spaces and flexibility conditions. Let (X,X) be a Whitney
stratified space in the sense of Definition [2.3] Then, by the Whitney conditions
(a), (b) of Definition and Thom’s isotopy lemma |[GMS8S8|, Section 1.5] (see also
Lemma we have:

Lemma 3.5. Let x € X and let S denote the unique stratum in which x lies. Then
there exists an open neighborhood U of x and a stratum-preserving homeomorphism
¢:U = R x cA, where

(1) S has dimension i

(2) A is a compact stratified space admitting a stratum-preserving homeomor-
phism with the link of S in X.

We shall now define a notion of sheaves over stratified spaces (X,¥). This is
a finer notion than that of a sheaf over the underlying topological space X. It
associates data to open subsets of each stratum-closure of X. To formulate this, we
introduce the stratified site associated to (X, X):

Definition 3.6. A stratified space (X,%) comes equipped with the canonical filtered
collection of topological spaces {S}, where

(1) S is a stratum of (X,X).

(2) S is equipped with the subspace topology inherited from X.
The stratified site Str(X, X)) is the full subcategory of all open sets of X, where

(1) Objects of Str(X,X) are open subsets U C S of some stratum-closure.
(2) Morphisms of Str(X,X) are inclusions U < V' between such subsets.

Remark 3.7. The term stratified site in Definition[3.6 is borrowed from algebraic
geometry. For example, it can be checked that Str(X,X) comes equipped with a
natural Grothendieck topology (namely, sieves in Str(X,X) are covers consisting of
objects in Str(X,X)), and forms an example of a site.

Definition 3.8. A stratified continuous sheaf F on X is a collection of continuous
sheaves {Fr}, one for every stratum L of X, such that for every pair S < L, there
is @ morphism of sheaves

resk : icFp — Fg
that we call the restriction map from L to S. Thus, a stratified sheaf F assigns a
quasitopological space F(U) to every object of Str(X,X) (Definition in a way
that the gluing aziom is satisfied, i.e. it is a quasitopological space-valued sheaf on

the site Str(X,X).
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Open subsets of (X, X)) are naturally stratified subsets; hence they are elements
of Str(X, ). We shall denote by Fg the restriction of the sheaf Fg to the open
stratum S.

Recall (Definition and the discussion in Section that for any stratified
fiber bundle (E, X, p), there are natural sheaves Jj, ", JE w» M 4 consisting of
controlled (or weakly controlled) formal and holonomic jets.

Definition 3.9. A stratified sheaf on (X,%) is flexible (resp. microflexible) if
for any stratum S, Fg is flexible (resp. microflexible).

A stratified sheaf on (X,%) is stratumwise flexible (resp. stratumwise microflexi-
ble) if for any stratum S, Fg is flexible (resp. microflexible).

Note that the latter is a condition on the sheaves {Fg} comprising the stratified
sheaf F after restricting each Fg to the open stratum S.

We recall a construction from [Gro86, p. 77]. Let F,G be continuous sheaves on
X and g: F — G be a morphism of continuous sheaves. Consider the continuous
sheaf F defined by assigning to every open set U C X the set

F(U) :={(s,7) € F(U) x Maps(L,G(U)) : a(s) = 7(0)}.

Equip F (q ) with a quasitopology as follows: for any topological space W, a
map W — F(U) is continuous if and only if the projections W — F(U) and
W — Maps(I,G(U)) are continuous. There is a morphism of continuous sheaves
q:F — G given by ¢q(s,v) = v(1). Then

q: F(U) = G(U)
is a fibration. Let ¢ € G(X) be a global section.

Definition 3.10. We shall call the fiber of ¢ over ¢ the homotopy fiber of ¢ over
Y: _

hofib(g; ¢)(U) := ¢~ (¢|v) € F(U).
If the choice of ¥ € G(X) is understood, we simply denote the homotopy fiber sheaf
as hofib(q).

Let F be a stratified continuous sheaf on (X,X). For ease of exposition, we
assume the existence of and fix a global section ¢ € F(X).

Definition 3.11. For S < L, define the closed homotopy fiber sheaf of F from L
to S by
Hg = hofib(resk : i5Fy — Fe).
The corresponding open homotopy fiber sheaf is defined to be H% = zgﬂé
Note that
HE = hofib(iy Fr — Fs).
Definition 3.12. A stratified continuous sheaf on (X, X)) is infinitesimally flexible
across strata if for any S < L in X, ’Hé is flexible.

Lemma 3.13. Let F be a continuous sheaf over X and Z C K C X be compact
subsets.
(1) If F(K) — F(Z) is a fibration, then so is Maps(I™, F(K)) — Maps(I", F(Z)).
(2) If F is a stratumuwise flexible stratified sheaf, so is Maps(I™, F).
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(3) If F is a stratified sheaf which is infinitesimally flexible across strata, so is
Maps(I™, F).

Proof. 1) We are given that F(K) — F(Z) is a fibration. Let C' be a CW-complex;
then every map C x I"™ x I — F(Z) with a chosen initial lift C' x I"™ x {0} — F(K)
admits a lift. Thus, Maps(I™, F(K)) — Maps(I™, F(Z)) satisfies the homotopy
lifting property with respect to homotopies of maps from C. As C' was arbitrary, this
proves Maps(I™, F(K)) — Maps(I™, F(Z)) satisfies the homotopy lifting property
and thus is a Serre fibration.

2) This is an immediate corollary of (1).

3) Infinitesimal flexibility across strata is the statement that for all S, L € ¥ x, S < L,
HE is flexible. Applying Maps(I™, —) and using ¢§ Maps(I™, F;) = Maps(I", .5F%),
we obtain the desired claim. (]

3.3. Diff-invariance. We shall say that U C S is a relatively compact embedded
open ball, if U is an open ball and U C S is a compact (smoothly) embedded
ball in S. Following Gromov [Gro86], we shall say that a sheaf F over a manifold
V' is Diff .-invariant if it is acted on by the pseudogroup of compactly supported
diffeomorphisms of V' in the following sense: for every pair of relatively compact open
balls U,U’ C V (i.e., U,U’ are embedded compact balls in V), and a diffeomorphism
¢ : U — U, there is an isomorphism of sheaves ¥ : ¢*(F|y) — F|u+ such that ¢
is functorial in ¢, U, U’. Recall that the pseudogroup Diff.(V') of diffeomorphisms
is the set of all pairs (U, f), where U C V is an open set and f is a compactly
supported diffeomorphism of M carrying U onto another open set U’ = f(U) C V.

Finally, if 7!, 2 are Diff .-invariant sheaves over a manifold V, then a morphism
of sheaves ® : F1 — F? is said to be Diff.-invariant if it is natural with respect
to the Diff.(V)-action, i.e. if ¢; : ¢*(F'ly) — F'|yr, for i = 1,2, denote the
isomorphisms above, then the following diagram commutes:

¢ (Fllo) —2 Fllos

° °
O (Fly) = Pl

Definition 3.14. A stratified continuous sheaf on a stratified space (X,X) is
StratDiff-invariant if

(1) for any S < L in X, igFy is Diff.(S)—invariant.

(2) for any S € ¥, Fg is Diff .(S)—invariant.

(3) for any S < L in %, resk is Diff .(S)—invariant.

We observe the following.

Lemma 3.15. Let F be a Diff . —invariant sheaf over a connected manifold M.
Then F has constant stalks, i.e. for any pair of points x,y € M, Fp = F,.

Proof. Let x,y € M. Let {U; : i € N} be a family of nested open balls around
x such that M;U; = {z}. There exists a homeomorphism ¢ : Uy — V; such that
V1 is a neighborhood of y, and ¢(z) = y. let V; = ¢(U;). Then {V; : i € N} is a
family of nested open balls around y such that N;V; = {y}. By Diff, —invariance,
Flu, &2 ¢*Flv,, and hence (by passing to limits), F, = F,. O

Let F be a stratified (continuous) sheaf over a stratified space (X, X) such that
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(1) F is infinitesimally flexible across strata.
(2) F is StratDiff —invariant.

Recall that for any S < L in ¥, resk : i5Fy — Fg is a morphism of sheaves, and
HEL = hofib(resk) denotes the homotopy fiber sheaf.

Lemma 3.16. Hé is Diff.(S)—invariant. In particular, Hé has constant stalks
over S.

Proof. By StratDiff —invariance (Definition of F, it follows that

(1) for any S < L in ¥, i¢F7 is Diff .(S)—invariant.

(2) for any S € 3, Fgs is Diff .(S)—invariant.

(3) for any S < L in X, resk is Diff.(S)—invariant.
By functoriality of the homotopy fiber construction, H% is Diff.(S)—invariant.
Hence, by Lemma Hé has constant stalks. ([

4. THE SHEAF-THEORETIC H-PRINCIPLE

4.1. The (Gromov) diagonal normal sheaf. Let F be a continuous sheaf over
a locally compact countable polyhedron X (e.g. a stratified space). Define a sheaf P
over X x X by assigning to every basic open set U x V' C X x X, the quasitopological
space

P(U x V) := Maps(U, F(V)),

Definition 4.1. The (Gromov) diagonal normal sheaf F* associated to F is defined
by

F* = diag* P,
where diag : X — X x X is the diagonal embedding.

When F is a subsheaf of the sheaf of sections of a surjective map P: E — X
between topological spaces, an alternate description of the (Gromov) diagonal
normal sheaf may be given in terms of (a slight relaxation of) Milnor’s construction
of microbundles [Mil64}, [Kis64].

Definition 4.2. Let X be a topological space. The tangent microbundle (Ux, X, p)
to X is defined to be the germ of a neighborhood Ux of diag(X) C X x X along
with the projection p : Ux — X to the first coordinate.

Remark 4.3. In Milnor’s definition |Mil64], a microbundle is required to always
be locally trivial, whereas we relax this condition.

Let P : E — X be surjective and I'(U, E') denote the space of sections over
U C X equipped with the compact open topology. Let F denote a subsheaf of the
sheaf of sections I'(—, F) satisfying some property A, i.e. F(U) consists of sections
s € (U, E) satisfying the property .A.

Then P(U x V') consists of continuous maps from U to F(V)) C I'(V, E) (where the
latter has the inherited compact open topology). The following are two equivalent
descriptions:

(1) P(U x V) consists of U—parametrized families of sections over V satisfying
property A

(2) P(U x V) consists of continuous maps from U x V to E such that for each
x € U, it restricts on {z} x V to a section o, : V — F satisfying property
A
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It is more convenient to think of F* as the restriction of P to the tangent microbun-
dle (Ux, X,p) (Definition rather than as the restriction to diag(X). This is
because (Ux, X, p) is defined as a germ of open neighborhoods of diag(X) C X x X
and restriction of the sheaf P to any representative of Uy makes sense without
passing to limits. We proceed to describe this in some more detail.

Let {U; x U;} be a collection of basic open sets in X x X. We shall say that a
collection of elements ¢; € P(U; x U;) are consistent, if for all i # j,

¢i = ¢j on (Uz ﬂUj) X (Ul ﬂUj)

Let W C diag(X) C X x X be an open subset. Then any element of F*(W) is
represented by a family of consistent elements ¢; € P(U; x U;), where {U; x U;}
covers W. Using the equivalence described in the preceding paragraphs, we may
treat ¢; as maps ¢; : U; x U; — E. The consistency condition therefore allows us to
glue these to a well-defined map ¢ : (W x W)NUx — E. We list the properties of
this map as a characterization of sections of F* over W:

Remark 4.4. ¢: (W x W)NUx — E is an element of F*(W) if and only if

(1) The restriction @|giag(w) of ¢ to diag(W) is a section of E over p(diag(W)) =
W C X, and

(2) For any w € W, the restriction of ¢ to ({w} x W) N Ux is the germ of a
section of E over the open subset po(({w} x W)NUx) C W C X of w where
p2 : X X X — X defines the projection of X x X to the second coordinate.

Thus, the first coordinate in X x X defines the base space of the microtangent
bundle (Ux, X, p), and the second gives germs of neighborhoods of points z € X.
Hence, an element of F*(W) is given by a section of E over W (in the first coordinate)
decorated with germs of sections {s,, : w € W} (in the second coordinate).

A caveat is in order. The preceding paragraph suggests that elements of F7*(X)
correspond to maps Ux — E from the total space of the tangent microbundle
(Ux, X, p) to the total space of the surjective map (F, X, P) whose sections define
the sheaf F. However, this map is not a fiber-preserving map; in fact, the situation
is completely orthogonal. This is because the fibers of the tangent microbundle
p: Ux — X are subspaces of the second factor in the square X x X, which map to
germs of sections of the surjection P : E — X, and are therefore “transverse” to
the fibers of P.

Definition 4.5. Let F denote a continuous sheaf X. Let W be a fized topological
space. Define a new sheaf Maps(W, F) over X as follows. For any U C X open, set

Maps(W, F)(U) = Maps(W, F(U)),
where Maps(W, F(U)) is equipped with the standard quasitopology on mapping spaces.

Lemma 4.6. For F, X, W as in Definition[{.5 above, the Gromov diagonal normal
sheaves satisfy

(Maps(IV, F))* = Maps(W, F*).
Proof. Consider the sheaf P on X x X given by
P(U x V) = Maps(U, Maps(W, F)(V)).
Also, let P; be the sheaf on X x X given by
P1(U x V) = Maps(U, F(V)).
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Then,
PU x V) =Maps(U,Maps(W,F(V))) = Maps(U x W,F(V)))
= Maps(W, Maps(U, F(V))) = Maps(W,P1(U x V).
Hence,
(Maps(W, F))* = diag" P = diag™ (Maps(W, P1))
Maps(W,diag" P;1) = Maps(W, F*).

a
There exists a sheaf over W x X closely related to the sheaf Maps(W, F) over X
(Definition [4.5)). This is defined below.

Definition 4.7. Let G denote a sheaf of topological spaces over X. Let W be a fized
topological space. Define a new sheaf of W—parametrized sections F = Maps? (W, G)
over W x X as follows. For any U C X and V C W open, set

F(V xU) = Maps? (W, F)(V x U) = Maps(V,G(U)),
where Maps(V,G(U)) is equipped with the compact open topology.

Example 4.8. A natural example of a sheaf of W —parametrized sections may
be given by the following. Let P : Y — X be a continuous surjective map and
let G denote the sheaf of continuous sections of P. Let W be a fixed topological
space. Define a continuous surjective map Py : W x Y — W x X such that
Pw(w,y) = (w,P(y)). Then the sheaf of continuous sections of Py is given
precisely by F = Maps? (W, G).

Lemma 4.9. For F,G,X,W as in Definition [{.7 above, the Gromov diagonal
normal sheaves satisfy the following for open V.C W and U C X :

F*(V x U) = Maps(V,G*(U)).
Proof. As in Definition the Gromov diagonal normal sheaf is constructed by
first constructing a sheaf P on (W x X) x (W x X) as follows.
P(VxU)x (VxU))= Maps((V x U), F(V x U))
— Maps((V x U), Maps(V, G(U))
= Maps((V x V), Maps(U,G(U)))

Restricting P to the diagonal, we have the following.
F(VxU)= diag" P((V x U) x (V x U))
hg{(?:(VXU)X(VXU)DODdiag(VXU)} PV xU) x(VxU))
B vty x (v <0y 50 ding(v <oy MaPs((V X V), Maps(U, G(U)))
= Maps(V, G*(U))
This completes the proof. ([l

There is a tautological inclusion
A:F -5 Fr
sending s € F(U) to (s,{sy : € U}), where s, denotes the germ of the section s
at z € U.
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Definition 4.10. [Gro86, p. 76] A (continuous) sheaf F satisfies the sheaf theoretic
h-principle, if every section ¢ € F*(U) can be homotoped to F(U) C F*(U) for all
open subsets U C V. Further, F satisfies the parametric sheaf theoretic h-principle
if the morphism Ay : F(U) — F*(U) is a weak homotopy equivalence for all open
UcCX.

Proposition 4.11. [Gro86, p. 76] Let F be a continuous sheaf over a locally
compact finite dimensional Hausdorff space X. Then F* is flexible.

Theorem 4.12. [Gro86| p.76] Let F be a continuous sheaf over a locally compact
countable polyhedron X (e.g. a manifold or a stratified space). If F is flexible, it
satisfies the parametric h-principle.

Remark 4.13. For sheaves, the notion of flexibility is strictly stronger than that
of an h—principle. Suppose X is locally contractible. By definition of the stalks F,
and F; of a continuous sheaf F and its diagonal normal form F*, respectively, we
see that the tautological inclusion A, : F, — F, is a weak homotopy equivalence
at the level of stalks. That is, the germ of a formal section at z is homotopic
to the germ of a holonomic section at x. Therefore, given a formal section in an
open neighborhood U, of x, we may homotope it to a holonomic section, possibly
in a small open neighborhood U. C U,. Flexibility allows us to glue these local
holonomic sections together to obtain a (global) holonomic section over a large open
set. Thus, flexibility may be thought of as an analog of a Mayer-Vietoris principle
used to glue homotopy equivalences (see for instance Theorem below).

The existence of the h—principle is invariant under homotopy equivalence of
sheaves (essentially by definition), i.e. if F satisfies the h—principle and G is homotopy
equivalent to F, then G satisfies the h—principle. The same is not true for flexibility.
This is the raison d’etre behind the existence of Section 2.2.7 of [Gro86].

4.2. Parametric h-principle for stratified continuous sheaves. We now ex-
tend the notion of a sheaf-theoretic h-principle (Definition to stratified sheaves.
The essential difference between a stratified continuous sheaf and a continuous sheaf
over X is that a stratified sheaf F assigns a quasitopological space F(U) to an open
subset of U C L for every stratum L of X, whereas an ordinary sheaf does so only
for open subsets of X. Hence, for every pair S < L, and for every x € S, there are
two stalks:
(1) (Fs)z, which we shall refer to as the intrinsic stalk. More generally, for any
U C S, (Fs)|v will be referred to as the intrinsic sheaf over U.
(2) (46F7 )z, which we shall refer to as the extrinsic stalk. More generally, for
any U C S, (i5F%)|u will be referred to as the extrinsic sheaf over U.

Definition 4.14. For a stratified sheaf F = {Fg}, over a stratified space X, the
Gromov diagonal normal stratified sheaf is given by F* = {.7-"%}

We check below that the restriction morphisms of F* are the expected ones, and
that there is a canonical map from F to F*.

Lemma 4.15. F* is a stratified sheaf, and A : F — F* is a morphism of stratified
sheaves.

Proof. The intrinsic and extrinsic sheaves give two different diagonal normal sheaves
(Definition [4.1)) F§ and (i§F7)* respectively. We note also that for open subsets U
of L (for any stratum L), the morphism A : F|U — F*|U is a morphism of sheaves.
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Hence, it suffices to show that for S < L, and V C S, resk” : i*(Fp)* — Fiis a
morphism of (continuous) sheaves (for the purposes of this proof we use i in place
of ig as no other strata are involved). It will immediately follow from the definition
of F*, that the following diagram commutes for S < L:

FFLV —2 (¢ FL)*|V

L L
rebsl lress

Fslv —2  FHV

In other words, we need to show that the restriction map resé induces a natural
restriction map resé* between the Gromov diagonal normal extrinsic sheaf (:*Fp,)*
and the Gromov diagonal normal intrinsic sheaf 3. This is an exercise in unwinding
definitions.

On X x X define Pr(U x V) = Maps(U, F(V)) where U,V are any pair of open
subsets in some stratum-closure L. The collection

{Pr : Lastratum of X}

defines a stratified sheaf P on X x X. Restricting P to diag(X) we get the Gromov
normal sheaf F*. Note that L x L C X x X comes with the product stratification,
and diag(S) C diag(L) gives the diagonally embedded stratum S in the diagonally
embedded L.

It remains to show that the diagonal restriction of P is a stratified sheaf. We have
four strata S x S, S x L,L x S,L x L C L x L in L x L that need be considered in
defining the restriction of P to any subset that inherits its stratification from the

product stratification of S < L.

Observation 4.16. The definition of F* only considers the strata S x S, L x L.
The strata S x L, L x S are irrelevant.

Proof of Observation[{.16. We explain this observation in some detail. For U,V C
S, we shall denote open neighborhoods in L by Uy, V}, respectively. For K C S,

F3(K) = lim Ps(UxV)= lim Maps(U, F(V)),

UDK,VOK UDK,VOK
whereas
Fi(K) = hgi Pr(Up x Vi) = h_n} Maps(Ur, F(VL)).
ULDK, VL DK ULDK, VI DK

Thus, while there are, in general, four limits to be considered (corresponding to the
four strata S x S, S x L,L x S,L x L. C L x L), the definition of F* only needs
SxS,LxL. O

Finally, we can assume without loss of generality that U = U,NS and V = VyNS.
This gives restriction maps from Pr(Ur x Vi) — Ps(U x V). Passing to direct
limits furnishes resg concluding the proof. ]

We now have the following analog of Definition

Definition 4.17. A (continuous) stratified sheaf F satisfies the stratified sheaf
theoretic h-principle, if every stratified section ¢ € F*(U) can be homotoped through
stratified sections to F(U) C F*(U) for all open subsets U C V.
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Further, F satisfies the parametric stratified sheaf theoretic h-principle if the
morphism Ay @ F(U) — F*(U) of stratified sheaves (furnished by Lemma
is a weak homotopy equivalence for all open U C X equipped with the inherited
stratification, i.e. the morphism Ay : F(U N L) — FHUN L) given by Lemma
is a weak homotopy equivalence for every stratum L.

The following is an analog of Proposition [£:11] for stratified sheaves:

Proposition 4.18. Let F be a stratified continuous sheaf over a stratified space X.
Then F* is flexible.

Proof. Flexibility of Ff for every stratum L follows from Proposition [£.11] and
naturality of restriction maps from Lemma [4.15 ]

We are now in a position to state the the stratified analog of Theorem

Theorem 4.19. Let F be a stratified (continuous) sheaf over a stratified space X.
If F is flexible, it satisfies the parametric sheaf-theoretic stratified h-principle.

Proof. By Lemma A is a morphism of stratified sheaves. The weak homotopy
equivalence property for A : F& — .7-% for every stratum L follows from Theorem
4,12 [l

4.3. Topological properties. This subsection is rather general in flavor and sets
up some basic homotopy theoretic properties of continuous sheaves that will be
useful later. All topological spaces in this subsection are locally compact o-compact
finite dimensional locally contractible spaces.

Definition 4.20. Let Fi, F2, F3 be continuous sheaves on a topological space X .
We say that
Fi 5 Fo 5 Fs
is a homotopy fiber sequence if
(1) there exists some ¢ € F3(X) such that qu opy : F1(U) — F3(U) is the
constant map to Yy, for allU C X, and
(2) F1 — hofib(g; ¥) is a weak homotopy equivalence.

The following was observed by Gromov [Gro86l p.77] (see the paragraph preceding
Theorem B’ there).

Remark 4.21. Let F,G be continuous sheaves on X and q : F — G be a morphism
of continuous sheaves. If F,G are flexible, then for any ¢ € G(X), hofib(g; ¢) is
flexible.

Lemma 4.22. Let

Fi 5 RS T
be a homotopy fiber sequence as in Definition[{.20, If F1,Fs satisfy the parametric
h-principle, then so does Fs.

Proof. From the homotopy fiber sequence, we obtain a sequence of morphisms
P1 — P2 — Ps of continuous sheaves over X x X (see Definition and the
preceding discussion for notation). Restricting to diag(X) C X x X, we obtain
a sequence of morphisms Fy — F5 — Fi of sheaves over X. By functoriality
of the diagonal normal construction (see for instance Lemma , we obtain a
commutative diagram
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Fi Fa F3
| | |

As Fi, F3 satisfies the parametric h-principle, the first and third vertical arrows are
weak homotopy equivalences. We may evaluate the diagram of sheaves on any open
set U C X, and use naturality of homotopy long exact sequences corresponding to
the rows to conclude, by an application of the 5-lemma, that F2(U) — F5(U) is a
weak homotopy equivalence. Thus, F» — F3 is a weak homotopy equivalence of
continuous sheaves. This demonstrates the parametric h-principle for F,. ]

Remark 4.23. The proof of Lemma[].23 goes through mutatis mutandis to show
that if any two of F1,Fa, F3 satisfy the parametric h-principle, then so does the
third.

Convention 4.24. Henceforth, we adopt Gromov’s convention |Gro86, Section
1.4.1] of referring to an arbitrarily small but non-specified neighborhood of a set
K C X by Opx K, or simply Op K if there is no scope for confusion. Thus, Op K
refers to a small neighborhood of K which may become even smaller in the course
of the argument [Gro86l p. 35] (see the table on [Gro86l, p. 36| for further details
about this convention/notation,).

Lemma 4.25. Let F be a continuous sheaf on a topological space X, and Z C X be
a closed subspace. Then the diagonal normal construction commutes with restriction,
i.e. there is a weak homotopy equivalence of continuous sheaves vl (F*) — (¢5,F)*.

Proof. Recall that the diagonal normal construction applied to any sheaf yields a
flexible sheaf (Proposition 4.11)). Therefore G := F* is a flexible sheaf on X. For
K C Z compact, we have the following:

YO)(K)= i 3 = 1 li = 1 =G(K
(zG)(K) = lm zG(V) = lim im  G(U) im  G(U) = G(K)

UDV UDK
VCZ open VCZ open UCX open UCX open

Thus, flexibility of G implies flexibility of ¢3,G = ¢}, (F*). Moreover, (3, F)* is flexible
by flexibility of the diagonal normal construction as mentioned above. Consider the
sheaf morphism
(z 21 z(F7) = (7 F)°

defined on the stalk over z € Z by sending a germ of a mapping ¢ : Opy (z) — F, to
its restriction ¥| Op,(z) : Op,(z) — F.. We check that (—)|z is a sheaf morphism.
Indeed, given any open set U C Z consider an open cover {V;} of U in X, and a
collection {¢; : V; — F(V;)} which is consistent, i.e.,

VNV, =Tesy;nv;,v; © @;
Thus {¢; : Vi = F(Vi)} represents an element ¢ € v (F*)(U). The restrictions
{¢; : VinZ — F(V;)} are also consistent, simply by restricting the above equality
to Z. Therefore {¢; : V;NZ — F(V;)} represents an element ¢|z € (t5F)*(U).
Observe that (—)|z is a stalkwise weak homotopy equivalence as X, Z are locally
contractible. As both the domain and target sheaves are flexible, we conclude that
(—)|z is a weak homotopy equivalence by appealing to a theorem of Gromov [Gro86,
Theorem B, p. 77] which says that local weak homotopy equivalence implies weak
homotopy equivalence for flexible sheaves. O

resv;nv;,v; © di Vinv; -
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Remark 4.26. Suppose Z C X is a neighborhood deformation retract, and let
m: Nz — Z be a choice of such a retract. Then we can write down an explicit
homotopy-inverse
(m)om: (15 F)" = 17(F)

defined on the stalk over z € Z by sending a germ of a mapping ¢ : Opy,(z) = F,
to Y om : Opx(z) = F,. Let ¢ € (13 F)*(U) be a section represented by a
consistent family {¢; : V; N Z — F(V;)} for a m-saturated open cover {V;} (i.e.,
Vi =n"Y(V; N Z)) of U in Ny, satisfying the consistency relations:

resy;nv;,v; © $ilvinv,;nz = 1esvinv;,v; © @5lvinv,nz
By taking a sufficiently fine open cover, we may assume V; C Nz. By composing
with 7 on both sides we obtain a consistent family {¢;on : V; — F(V;)} representing
pom € (1) (F*)(U), proving that it is a well-defined sheaf homomorphism. Gromov’s
theorem [Gro86, Theorem B, p. 77] once again demonstrates that it is a weak

homotopy equivalence.
Definition 4.27. Let (A, B) be a pair of topological spaces where B C A is closed.

Let F be a continuous sheaf on A. We define the space of sections on a deleted
germinal neighborhood of B in A as
F(Op(B)\ B) := lim F(U\ B)
UDB

There is a restriction map F(U) — F(U \ B) for every open neighborhood U of
B C A which is compatible with the associated directed system indexed by the
poset of open neighborhoods {U C B : A C U}. Hence we get a restriction map
F(B) — F(Op(B) \ B) by applying direct limits lim, . to both sides. Moreover, we
have a restriction map F(A\ B) — F(Op(B) \ B) by restricting a section on A\ B
to a deleted germinal neighborhood of B in A.

Lemma 4.28. Let (A, B) be a pair of topological spaces where B C A is closed. Let
F be a continuous sheaf on A. Then the following is a fiber square of quasitopological
spaces:

FA4) — F(B)

|

F(A\B) —— F(Op(B)\ B)
Proof. Suppose ©; € F(B) and s € F(A\ B) such that ¢1|(Op(B)\ B) =
5| (Op(B) \ B). Pick a representative 1, € F(U) for some U D B open neigh-
borhood. Then we must have ¢ |(V \ B) = |(V \ B) for some deleted open

neighborhood V' \ B C A. Next, we know that the following is a fiber square by the
gluing axiom:

F(A\B) —— F(V\B)

We may then glug 1;1 |V and 19 to obtain a ¢ € F(A). The element 1 is independent
of the choice of ¥;. We therefore obtain a well-defined map

U F(A\ B) XropB)\B) F(B) = F(A),
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given by U(¢1,19) = 1. For any topological space X, consider a continuous map
[+ X — F(A\ B) xropB)\B) F(B) with respect to the quasitopology on the
codomain. Then f is equivalent to a pair of continuous maps f; : X — F(A\ B) and
f2 : X — F(B) which agree when composed with the restriction to F(Op(B) \ B),
by definition of quasitopology of fiber products. By definition of quasitopology on
limits, there exists an open neighborhood U and a deleted open neighborhood V' \ B
of B contained in U, such that fs factors through a continuous map f; : X = F(U)
and fi, fg agree when restricted to F(V '\ B). Therefore, we may paste fg|V and f
to a continuous map g : X — F(A). We see that g = f o U, therefore ¥ preserves
the quasitopologies on the domain and codomain, i.e., ¥ is continuous.

Finally, ¥ is inverse to the natural continuous map going in the opposite direction
obtained from the universal property of fiber products. Thus, ¥ is a homeomorphism
of quasitopological spaces. (I

Lemma 4.29. Let F be a flexible sheaf on a topological space on X. Let A, K C X
be a pair of subsets such that K, AN K are both compact. Then F(AU K) — F(A)
is a fibration.

Proof. The following is a fiber square of quasitopological space

TeSK,AUK

F(AUK) F(K)
reSA,AuKl reSAﬁK,KJ/
F(A) A4 FANK)

Suppose 1 : W x I — F(A) is a homotopy with an initial lift ¢ : W x 0 — F(ANK).
As AN K, K are compact, resang, i : F(K) = F(ANK) is a fibration. Therefore,
we may lift resank, a4 09 : W x I — F(AN K) with initial condition resx aux © {/;0 :
W x 0 — F(K) to a homotopy ¢ : W x I — F(K). Finally, using the fact that the
diagram is a fiber square, v, ¢ provide a lift 1Z W x I — F(AUK) of v, finishing
the proof. 0

Lemma 4.30. Let {X,,} be an inverse system and {Y,} be a directed system of
quasitopological spaces. Let Z,W be quasitopological spaces. Let {f, : X, — Z}
and {gn : W — Y,,} be a collection of maps compatible with the systems {X,,} and
{Y,.} respectively. Let X = @Xn, Y = ligYn, and f: X - Z,g: W =Y be the
canonical maps from, and to, the respective limits.

(1) If fn are fibrations and the structure maps in {X,} are also fibrations, then

f is a fibration.
(2) If gn are fibrations, then g is a fibration.

Proof. Let @ be an auxiliary topological space. Let ¢ : Q x I — Z be a homotopy
with an initial lift ¢g : @ x {0} — X of ¢y := ©|Q x {0}. Choose a lift of ¥ to
a homotopy @ x I — X; along the fibration f; : X7 — Z, given initial condition
T O 1;0 : @ x {0} — X;. Then, since the structure maps of the inverse system are
fibrations, we may lift @ x I — X; to a homotopy @Q x I — X,, using as initial
condition the maps m, o 1;0 for all n > 2. This gives a collection of homotopies
{Q x I — X, } compatible with the structure maps of the inverse system. By the
universal property of inverse limits, this provides a homotopy zz :Q x I — X, such
that @Z is a lift of ¢ with initial condition 1:/;0 as desired. This proves (1).
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Let ¢ : Q x I — Y be a homotopy with an initial lift ¢ : Q x {0} — W of
Yo := ¥|@Q x {0}. By definition of the quasitopology of the direct limit, ¢ factors
through a homotopy @ x I — Y,,. Since g, : W — Y,, is a fibration, we may lift ¢
to @ x I — W, using @ZO :Q x {0} — W as the initial condition. This is a lift of ¢
with initial condition 1;0, as desired. This proves (2). |

We shall need the following theorem to ‘coglue’ weak homotopy equivalences. We
refer the reader to [BH70] by Brown and Heath, and the notes [Fral3l [Frall] for a
proof.

Theorem 4.31. Consider a commutative diagram of maps of quasitopological spaces
as in Figure [, where
(1) the front and back squares are (strict) pullback diagrams (equivalently, @
and P are fiber-products),
(2) p,q are fibrations

If the diagonal arrows, labeled ¢1, o, ¢ are weak homotopy equivalences, so is .

F1GUrE 1. Homotopy Co-gluing

We note here for later use, a fact about homotopy fibers of fiber-products:

Lemma 4.32. Let f : X — Z, and g: Y — Z be continuous maps, furnishing the
following pullback diagram:

Xx,V -2 v

L

Then, the homotopy fibers of X xzY =Y and f : X — Z are homotopy equivalent.

Proof. There are two homotopy fiber bundles that can be constructed over Y as
follows:

(1) Let P(X xzY,F,Y) — Y denote the path space fibration construction
applied to F': X xzY — Y, and let P, : E; — Y denote the resulting
fibration. Then hofib(P;) is homotopy equivalent to hofib(F').

(2) Let P(X, f,Z) — Z denote the path space fibration construction applied to
f:X — Z and let Py : E5 — Y denote the pullback fibration (under g) of
P(X, f,Z). Then hofib(P,) is homotopy equivalent to hofib(f).
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Then there exists a homotopy equivalence F1 — X Xz Y covering the identity
map over Y. The same holds for F5. Hence, there exists a homotopy equivalence
¢ : E1 — FE5 of total spaces covering the identity map over Y. Since P; : F4 —» Y,
and P, : E; — Y are fibrations, hofib(P;) is homotopy equivalent to hofib(P,). The
Lemma follows. (I

4.4. Sheaf-theoretic h-principle for stratified spaces. Let (X,%,N) be an
abstractly stratified set, and F be a stratified continuous sheaf on (X, %). For every
stratum S € ¥, we denote the associated sheaf on the closure S C X by F3 so that
Fs := 15 Fg. For every pair of strata S, L € 3, S < L, we also have the restriction
map from the sheaf on L to that on S C L given by resk : e Recall also

the restriction map res§ g — Fs.

4.4.1. Limits and preliminary gluing.

Lemma 4.33. Let U C L be an open subset and U' :=UNS. Let G = Fz, or .7-%.
Suppose that G is flexible. Then G(U\ U') = G(Opy(U")\ U’) is a fibration.

Proof. Let {K,} be an ascending sequence of compact subsets of U \ U’ exhausting
U\U’. Let {C},} be closures (in U) of a descending sequence of open neighborhoods
of U’ in U such that N, C,, = U’, i.e.

U'c..cCy3cC,cCiCU
K1CK2CK3C"'CU\U/
Consider restriction maps ry, ,, : G(K,, U (C,, \ U’")) — G(C,, \ U’). Since both

K,, and K,,N(C,\U") = K,, N C,, are compact, flexibility of G|L on L then shows
that for all m,n, ry, ., is a fibration by Lemma We observe now that:

Claim 4.34. {G(K,,, U(Cp, \U"))}m is an inverse system with structure maps given
by fibrations.

Proof of Claim[].37: Observe that for all m > 1, K11 U (C, \U’) = (K,, UC,, \
U')U Kypq1. Moreover, (K, UC, \U')N K11 = Ky U (Kppp1 NCy) and Koy
are both compact. Therefore, Lemma [1.29] applies, and we obtain

G(Kmi1 U(Cu\U")) = G(Kp U (C, \U))
is a fibration, for all m > 1. O

Claim 4.35. lim G(K,, U (C,\U")) = GU\U").

Proof of Claim[{.35: This is true in complete generality. Let V be an arbitrary
open set (here V = (U \ U’)). Let {C,,} (resp. {U,}) be a sequence of closed (resp.
open) subsets of U such that

(1) C, Cc U, C Cpy1,

(2) U, Cp =U =U,U,.
There exist restriction maps G(V) — G(C},) which are compatible with the inverse
system {G(C,)}. Hence by the universal property, there exists a continuous map
Gg(v) — l'&lQ(C’n). On the other hand, we have a continuous map © : @Q(Cn) —
@g (Un—1) given by restriction. Then © is a homeomorphism of quasitopological
spaces, with inverse © 1 : Im G (Up—1) — Im G (Cr—1) given by restriction again.
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The composition G(V) — im G (Cr) — lim G (Up—1) is also a homeomorphism,
by the gluing property of continuous sheaves applied to the open cover {U,,_1} of
U. Hence, G(V) = LiLng(Cn), as desired. O

Claim 4.36. lim §(C, \U") 2 G(Op, (UH\U").
Proof of Claim[{.36: Consider the following chain of homeomorphisms
liy G(Co \ U) = limg Ty G(V'\ ") = limy G(V\ ) = G(Opy, (") \ 1)
n n VOC, VvouU’

where V' D (), varies over all open neighborhoods of C,, in U. O

We now proceed to take limits of 7, ,, first as m — oo and then as n — oco. By
Lemma this gives that G(U \ U’) — G(Opy (U’) \ U’) is also a fibration. O

Proposition 4.37. Let (X,Xx) be a stratified space with exactly two strata, ¥x =
{S,L}, with S < L, so that X = L. Let F be a stratified continuous sheaf on X.
Assume the following:
(1) Fs =igFg satisfies the parametric h-principle,
(2) Fr =1} Fg is flexible, and
(3) for some ¢ € Fs(S), HL = hofib(resk; ) satisfies the parametric h-
principle.

Then F = Ft satisfies the parametric h-principle.

Proof. Let ¢ € Fg(S) be as in Definition Then by hypothesis there exists a
homotopy fiber sequence of continuous sheaves over .S, given by

hofib(res§; ¥) — t5Fr — Fs.

By hypothesis, Fs and hofib(resg ;1) satisfy the parametric h-principle. Hence, by
Lemma so does t§F7, i.e. the natural inclusion map ({F5 — (L5F5)* is a weak
homotopy equivalence. Combining this with Lemma we conclude that the
map (t5Ff)" — 15(F7) is a weak homotopy equivalence. By Remark we can
in fact choose the homotopy inverse to be (—) o mg. This implies that the resulting
composition map

vsFp = (s Fg)" = vs(Fp)
is simply the restriction of the diagonal normal construction F7 — FI to S.

Let & : F& — ]—'% denote the natural morphism in the diagonal normal construc-
tion. Then ®[L : Ff, — Ff and @[S : 15Fp — 15(F7) are both weak homotopy
equivalences. We would like to “glue” these to a weak homotopy equivalence ®. To
this end, let U C L be an open subset and U’ := U N S. Using Lemma we
have fiber squares:

FAU) ——s FL(U") FiU) —— FrU)

Fr(U\U') —— Fp(Opy(U)\U")  FLU\NU') —— FL(Opy(U)\U')
The diagonal normal construction map ® gives natural maps from each corner of
the first diagram to the corresponding corner of the second diagram. Note first that

® is a weak homotopy equivalence on the top-right and bottom-left corners as ®|L
and ®|S are weak homotopy equivalences of continuous sheaves.
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Next, note that
@ : F(Opy (U)\U') = F(Opy (U) \ U

is a direct limit of the weak homotopy equivalences ®|(V \ U’) : Fz(V\U') —
FZ(V\ U’) indexed by open neighborhoods V' C U of U’ in U. Since homotopy
groups commute with direct limit of quasitopological spaces, hence the limiting map
is also a weak homotopy equivalence. Thus, ® is a weak homotopy equivalence on
the bottom-right corner as well.

We shall use Theorem to conclude the proof. To set up the situation such
that the hypotheses of Theorem are satisfied, we need to establish that

(1) @ is a weak homotopy equivalence on the top-right, bottom-left and bottom-
right corners. The above paragraph did precisely this.

(2) The right vertical arrows in both commutative diagrams above are fibrations.
Lemma [£:.33] gives this.

Finally, we apply Theorem [£:31] to “coglue” to a homotopy equivalence @ :
F-(U) — f%(U ). This proves that F7 satisfies the parametric h-principle. O

The above proof also gives us a criterion for checking the parametric h-principle
for a continuous sheaf on the underlying topological space of a stratified space.

Lemma 4.38. Let X be a stratified space. Let F be a continuous sheaf on X,
such that i5F is flexible for all (open) strata S, then F satisfies the parametric
h—principle.

Proof. We argue by induction on depth of X. If the stratified space X has depth
one, i.e. it is a manifold, then the result follows from Gromov’s Theorem Let
L denote the disjoint union of maximal strata of X, i.e. strata that do not lie on the
boundary of other strata. Let 0L = X \ L. Applying the inductive hypothesis to dL,
we conclude that i}, F satisfies the parametric h—principle. By hypothesis, we have
flexibility of i} F, since L is an open stratum in X. As in the proof of Proposition
we use Theorem to glue the homotopy equivalences i, F — (i}, F)* and
Vs F — (13 F)* to obtain a homotopy equivalence F — F*. Therefore, F satisfies
the parametric h-principle. (Il

Remark 4.39. It is important to distinguish the hypothesis of Lemma[].38 from
the hypothesis of stratumwise flexibility in Definition which applies to stratified
sheaves. Stratumwise flexibility is a condition on the intrinsic sheaves Fg of a
stratified sheaf, whereas the hypotheses above are related to flexibility of the extrinsic
sheaves 1 Fr, for S < L. The difference between these sheaves lies in the homotopy
fiber sheaf HE := hofib(resk; ).

Lemma 4.40. Let (X,X) be a stratified space, and F be a stratified sheaf on X.
For any pair of strata S < L in X, recall the associated closed and open homotopy

fiber sheaves ﬁé and H% from Definition . For any triad of strata P < S < L
in X, there exist homotopy equivalences of sheaves

i 5 ~ hofib (ﬁ,ﬁ = ﬁi) :

i Hg ~ hofib (H5 — HE) .
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Proof. Let f: X — Y and g: Y — Z. Then there exists a homotopy fiber sequence
hofib(f) — hofib(g o f) — hofib(g)

by [MP12] Lemma 1.2.7]. To translate this into the context of continuous sheaves,
consider the following diagram:

hofib(i%Fy — Fp) ——=—— hofib(i%Fg — Fp)
hofib (i F — i%Fg) > SFr 6 it Fs
7 8
IF

Here, the arrows 6,7,8 take the place of f,g o f, g respectively. The above
homotopy theoretic fact ([MP12l Lemma 1.2.7]) then shows that the arrows 1,2 give
a homotopy fiber sequence

hofib(i5F; — i%5Fg) — hofib(i5Fr — Fp) — hofib(isFg — Fp).
The first term in the sequence above can be identified with i*ﬁﬁg. Indeed,
ISILFr = 5 Fg) = i hofib(itFy — Fg) = iHs

The first statement of the Lemma follows. The second statement follows by replacing
P by P throughout. O

4.4.2. Gluing sheaves across strata that intersect along their closure. In the proof
of Theorem [£.42) below, we shall need to glue sheaves in different strata S;, S5 to
obtain a sheaf over S; U Sy when S; NSy # (). Note that Definition does not
directly furnish such a sheaf. We proceed by induction on height (Definition .
For strata of height zero, there is nothing new to construct. For concreteness, and
to illustrate the construction, suppose S;,S2 have height one, and S; NSy = P,
where P has height zero. Then there are two extrinsic sheaves ipFg and ipFg,
and restriction maps resf;l , IeSISD2 to Fp = Fp5. Then there exists a natural sheaf
F5us; given as follows:

(1) On a germinal neighborhood of P in S; U Sy (where the latter is equipped
with the subspace topology inherited from X), Fgus; is given by the fiber
product ipFg- X Fp ipFg;,

(2) On Sy (resp. S2), Fg7g; equals Fg, (resp. Fg,).

The general construction now follows by induction. Assume therefore that for
any finite union X, of strata of height at most m, we have a sheaf F,,, such that

(1) i§Fm = Fg for all strata S of height m.

(2) For any stratum closure P of height less than m, F,, equals the fiber product
of extrinsic sheaves of the form i*ﬁ}"g, where P C S.
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Then the gluing construction described above for two strata S1, So can be repeated
for strata of height m+1, and the same argument goes through for any finite collection
S1,--+, Sk of height m + 1. In particular, note that this furnishes a well-defined
sheaf Fy for any closed subset of X that is a union of strata. We note for use below,
the following Corollary of the proof of Proposition

Corollary 4.41. Let (X,X) be a stratified space with unique top dimensional stratum
L. LetY = 0L. Let F = {Fg: S € ¥} be a stratified sheaf on X. Suppose that
(1) Fy satisfies the parametric h—principle.
(2) ﬁ;( :=hofib(i}, Fx — Fy) satisfies the parametric h—principle.
(3) Fx|r is flexible.
Then Fx satisfies the parametric h—principle.

Proof. Lemma along with the first two conditions ensure that i Fx satisfies
the parametric h—principle. Now, flexibility of Fx|L allows us to co-glue Fx|L
and i-Fx as in the proof of Proposition @ to conclude that Fx satisfies the
parametric h—principle. (I

4.4.3. h—principle from stratumwise conditions. We are now in a position to prove
the main theorem of this Section. It says roughly that flexibility of homotopy fibers
for pairs of strata guarantees parametric h—principle for the stratified sheaf provided
the latter is stratumwise flexible. We shall first prove this assuming a total order of
strata.

Theorem 4.42. Let (X,X) be a stratified space and F be a stratified sheaf on X
such that
(1) F is stratumwise flexible, i.e. for every stratum S € X, Fg = igFg is
flexible on the stratum j.
(2) F is infinitesimally flexible across strata, i.e. for all S < L, the open
homotopy fiber sheaf HL is flexible.

Then the stratified sheaf F satisfies the parametric h—principle.

Proof of Theorem[[.4 under the assumption of total ordering: We first assume that
the strata of X are totally-ordered. Thus,
(1) (X,X) is a stratified space with strata ¥ = {S7 > -+ > S, } ordered so that
S < Sj ifi>j.
(2) F={F;:1<1i<n}is a stratified continuous sheaf on X, where F; is a
continuous sheaf on the stratum-closure S;.
For any pair of indices i > j, let ﬁz = hoﬁb(i%i]-"jf — F;), and 7—[{ = z’glﬁz be
the closed and open homotopy fibers, respectively, as in Definition [3.11] Then the
hypotheses of the theorem translate to the following:
(1) For all j, the sheaf F; := zgj F7 is flexible on the stratum j.
(2) For all ¢ > j, the open homotopy fiber sheaf 7—[{ is flexible.
We shall show that the sheaves F5 satisfy the parametric h—principle. We proceed
by induction on n. For n = 1, i.e. for manifolds, this is due to Gromov (see the
Main Theorem on pg. 76 of [Gro86]).
By induction, we can assume that F5 satisfies the parametric h—principle (using
the chain of n — 1 strata Sy > --- > S,,). We first prove that the closed homotopy

fibers ﬁ;, i > j satisfy the parametric h-principle.
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Claim 4.43. With notation and hypothesis as in Theorem ﬁz satisfies the
parametric h—principle for all i > j.
Proof of Claim[{.43 We prove this by downward induction on 4. First, let ¢ = n.
Since S, is the deepest stratum and therefore S,, = S,, H;, = HJ, and HJ, is
flexible by hypothesis. Hence, by [Gro86, p. 76], ﬂi = HJ satisfies the parametric
h—principle for all j < n.

Suppose now that the theorem is true for i =k +1 <n and all j <k + 1. We

shall show that ﬁi satisfies the parametric h-principle as a sheaf on S, for all j < k.

Observe that z’gkﬁi = ’Hi is an open homotopy fiber, hence flexible by hypothesis.

Next, by Lemma [4.40]
v g i —
i, H} =~ hofib (H;H - HM) .

—j —k
By the induction hypothesis, ’Hi 41 and H; ,, satisfy the parametric h-principle.

Therefore, by Lemma |4.22| and Remark (4.23 i%k ﬁ',i satisfies the parametric h-
+1

principle as well. Thus, by Corollary 4.41L ﬂi satisfies the parametric h-principle. [

In particular ﬁ; satisfies the parametric h-principle. By Corollary |4.41] we
conclude that F7 satisfies the parametric h-principle, as required. O

Proof of Theorem[{.43, the general case: We now show how to remove the hypoth-
esis of total orderability of strata in the proof of Theorem We shall proceed
by induction on height and apply Corollary We use the notation of Corollary
The proof of Corollary in fact shows that Fx satisfies the parametric
h—principle provided that for any maximal (with respect to height) stratum L, and

Y = 0L, we can show that Fy, and ﬁi satisfy the parametric h—principle. The
gluing needs flexibility of Fy, in Corollary but here our concern will be with
the parametric h—principle. Let m + 1 denote the height of L, so that Y has height
m. Assume by induction that

1) F4 satisfies the parametric h—principle for any substratified space A C X
p P p Yy P
of height < m.
2) Further, for any substratified space B C X with B > A, HY satisfies the
Yy A
parametric h—principle.

Set Y = UYY;, where Y;’s denote the closures of the maximal (with respect
to height) strata of Y. By induction on k, it suffices to prove the theorem for
k = 2. This is because the proof in the totally-ordered case (coupled with the above
inductive hypothesis) allows us to conclude that the statement is true for k = 1,
and we can take the union U’flei as a single stratified space in the inductive step.
Hence, assume that Y = Y7 UY5. Also, note that Z = Y7 N'Y5 has less height than
(at least one of) Y7, Ys.

We refer to the sheaf Fy (constructed from Fy, and Fy, as in Section as
the intrinsic sheaf on Y. Similarly, we refer to i3, Fx as the extrinsic sheaf on Y. It
suffices, by Corollary to prove that

(1) The intrinsic sheaf Fy satisfies the parametric h—principle, and

(2) ﬁif( = hofib(i}, Fx — Fy) satisfies the parametric h—principle.
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Fy satisfies the parametric h—principle:
To prove that Fy satisfies the parametric h—principle, it suffices by stratumwise
flexibility of F to show that

% .
A= ’LZ]:y1 X Fy ZE]:YQ

satisfies the parametric h—principle. (Recall that Z = Y; NY5. This reduction is
exactly as in the proof Proposition .

By Lemmal[d.32] hofib(A — i} Fy, ) is homotopy equivalent to hofib(i%, Fy, — Fz).
By the inductive hypothesis on height (of Z), hofib(i% Fy, — Fz) satisfies the para-
metric h—principle. Hence, so does hofib(A — i}, Fy,). Again, by the inductive
hypothesis on height (of Z), i3, Fy, satisfies the parametric h—principle. Hence, by
Lemma [£.:22] A satisfies the parametric h—principle.

ﬂif satisfies the parametric h—principle:
We know that the following sheaves satisfy the parametric h—principle:

(1) Fz and hofib(iy, Fx — Fz) (by the inductive hypothesis on closures of
strata on lower height, and closed homotopy fibers on closures of strata on
lower height)

(2) hofib(iy, Fx — Fy,) (from the proof in the totally-ordered case)

(3) hofib(iy, Fx — Fy,) (from the proof in the totally-ordered case)

It suffices (as in the proof of Proposition [4.37) to show that hofib(if, Fx — A)
satisfies the parametric h—principle.

Note now that by Lemma hofib(A — F) satisfies the parametric h—principle
(since we have already shown that A does, and the inductive hypothesis gives that
Fz does). Further, by the inductive hypothesis applied to the lower depth stra-
tum closure Z, the homotopy fiber hofib(i}; Fx — Fz) satisfies the parametric
h—principle. By Lemma [4.40} hofib(i}, Fx — A) is homotopy equivalent to

hofib ( hofib(ij; Fx — Fz) — hofib(A — Fz)).

By Lemma this satisfies the parametric h—principle. Hence, so does hofib(i}, Fx —
A). O

4.4.4. Flexibility versus h-principle. The aim of the example below is to illustrate
the necessity of flexibility of F on the top stratum in Theorem [1.42] and Proposition
It emphasizes that it is not enough to assume that F satisfies the parametric
h—principle on the top stratum.

Let X = M be an orientable 3-manifold, and FF C M be an embedded orientable
surface. Stratify X with two strata: L =M \ F and S = F, so that S = S. Let N
be another 3-manifold not covered by M.

The stratified sheaf F is defined as:

(1) FL(U) =Imm(U, N) for U C L open,
(2) Fs(V) =Imm(V,N) for V C S open.

Then the restriction map res : igFr, — Fg simply forgets the normal bundle to

S in M. We note the following;:

(1) Fir|L satisfies the parametric h—principle [Gro86, p. 79] as L is open.

(2) FL|L is not flexible (since the dimensions of M, N coincide, and both are
compact).

(3) Fg is flexible [Gro86, p. 79].
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(4) hofib(res) is flexible.

Proposition 4.44. With M, F,L,S as above, F does not satisfy the parametric
h—principle.

Proof. The Gromov diagonal construction applied to F gives F* homotopy equiv-
alent to a sheaf G given as follows. G(U) consists of bundle maps ¢ : TU — TN
covering smooth maps ¢ : U — N such that ¢|T,U is an isomorphism on every
tangent space T,U. In particular, G(M) consists of bundle maps ¢ : TM — TN
covering smooth maps 1y : M — N such that ¢|T, M is an isomorphism on every
tangent space T,M. Since M is an orientable 3-manifold, it is parallelizable, so
that TM = M x R3. Therefore G(M) contains ¢ covering a constant map . In
particular, G(M) is non-empty.

On the other hand, F(M) consists of immersions from M to N. Since M, N have
the same dimension, F (M) consists of covering maps. Since N is not covered by
M, F is empty. Hence, F does not satisfy the parametric h—principle. O

4.5. Microflexibility of stratified sheaves. For the purposes of this subsection
X will denote a stratified space, and V' a manifold. F will be a (stratified) continuous
sheaf. The aim of this subsection is to generalize the following theorem of Gromov
and its consequence below to stratified spaces and stratified sheaves over them.

Theorem 4.45. [Gro86, p. 78] Let Y =V xR, and let I1 : Y — V denote the
projection onto the first factor. Let Diff(V,II) be the group of diffeomorphisms of
Y commuting with 1, where V is identified with V x {0}. Let F be a microflexible
(continuous) sheaf over Y invariant under Diff(V,II). Then the restriction F|V (=
V x {0}) is a flexible sheaf over V(=V x {0}).

The principal consequence is the following flexibility theorem for Diff —invariant
sheaves.

Theorem 4.46. [Gro86l p. 78-79] Let F be a microfiexible Diff (V')—invariant
(continuous) sheaf over a manifold V. Then the restriction to an arbitrary piecewise
smooth polyhedron K C V of positive codimension, F|K, is a flexible sheaf over K.

Recall that a stratified (continuous) sheaf F over a stratified space X is stratum-
wise microflexible if for every stratum S of X, F|S is microflexible.
The main theorems of this section are now given below.

Theorem 4.47. Let Y = X x R equipped with the product stratification, and let
II:Y — X denote the projection onto the first factor. Let F be a stratumuwise
microflexible continuous sheaf over Y invariant under StratDiff (X II). Further,
suppose that F is infinitesimally microflexible across strata, i.e. for all strata S < L
of Y, HE (cf. Deﬁm’tion is microflexible. Then the restriction F|X (= X x {0})
is a stratified sheaf over X (= X x {0}) satisfying the parametric h—principle.

Proof. Note first that HL is invariant under StratDiff(X,II) by Lemma By
hypothesis,

(1) FIL x R is microflexible.

(2) HL is microflexible.
The strata L of Y are of the form Lx X R, where Lx = LN X. Note that L
is a manifold. Invariance of F and H% under StratDiff (X, IT) implies Diff (Lx x
R, IT)—invariance of F|Lx x R and H%|Sx x R. It follows from Theorem m
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that F|Sx and HE|Sx are flexible. Hence, by Theorem F|X satisfies the
parametric h—principle. ([

Definition 4.48. A stratified subspace K < X is said to be of positive codimension
if for every stratum S of X, K NS has positive codimension in S.

Theorem 4.49. Let F be a stratumwise microflexible StratDiff —invariant stratified
(continuous) sheaf over X. Further, suppose that F is infinitesimally microflex-
ible across strata, i.e. the open homotopy fiber sheaves H% (Deﬁmtion are
microflexible. Then the restriction F|K to a stratified subspace K C X of positive
codimension satisfies the parametric h—principle.

Proof. Since K is of positive codimension in X, for every k € K, there is an open
neighborhood Uy, of k in K such that Uy x (—1,1) embeds in X. The theorem now
follows from Theorem since locally flexible sheaves are flexible (by Gromov’s
localization lemma [Gro86l p. 79]). O

Remark 4.50. Theorems [[.47 and [[-49 provide examples of how to translate a
positive codimension stratumwise microflexibility hypothesis into an h—principle
conclusion.

5. THE GROMOV DIAGONAL NORMAL CONSTRUCTION FOR SMOOTH STRATIFIED
SPACES

We specialize the Gromov diagonal normal sheaf construction of F* in Definition
1] to the sheaf of sections of a stratified bundle E over a smooth stratified space
X. Even in the manifold setup, an explicit connection between Gromov’s F*
construction and the use of jets in [EM02] is a little difficult to find. Hence, we
provide a detailed treatment below. Remark [£.4] which gives an explicit description
of F* will allow us to formalize this. It will turn out that in the stratified context,
F* admits an inductive description up to homotopy in terms of two constituent
sheaves:

(1) A purely topological germ of sections (see Definition below).
(2) A smooth jet J7 when E is a smooth bundle over a manifold (see Proposition

below).

The aim of this section is to describe this structure of F*. In the process we answer
Sullivan’s question [1.2

5.1. Tangent microbundles on stratified spaces. The stratified tangent bundle
(Deﬁnition will turn out to be a stratified subbundle of the tangent microbundle
to X (Definition [4.2).

Note that for X a manifold, the tangent microbundle is germinally equivalent
to the tangent bundle T'X, as it coincides with the normal bundle to the diagonal
diag(X) C X x X. For each stratum S of X, T'S will thus refer to the tangent
microbundle of the manifold S, i.e. it may be identified canonically with the germ
of the zero-section from S to the usual (manifold) tangent bundle of S.

The tangent microbundle to a stratified space X, denoted by tX henceforth,
turns out to be a stratumwise bundle (see Definition . We provide an explicit
description of tX in terms of the local structure of X.

Let tX := (U, X, p) be the tangent microbundle of X. For x € X, consider the
fiber p~1(x). This is a germ U, of a neighborhood of x in X. Let S be the unique
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stratum of X containing z. Then there is an identification of U, with W x cA where
W is the germ of a ball around = in S and cA is the germ of a cone on the link A
of S'in X, with cone point x. Thus,

(P~ (2), {(z, 2)}) = (Us, {2}) = (W, {2}) x (cA, {z})
as germs of spaces. The bundle over S whose fibers are (germs of) the cones cA will
be denoted as NS, and referred to as the normal cone microbundle of S in X.
Hence the restriction of (U, p) to S, i.e. (p~1(S)NU, S, p) is germinally equivalent
to the direct sum, i.e. fiberwise product of the microbundles:

(p~'(S)NU,S,p) = (TS, S,p) & (NS, S,p),

where T'S is the tangent microbundle of S and (NS,S,p) is the normal cone
microbundle of S in X. This demonstrates that ¢tX is a stratumwise fiber bundle
over X according to Definition where the fiber over a point x € S of any
particular stratum S of X is given by T,,S @ cAg(x) where Ag denotes the link of
S in X, and cAg(x) denotes the normal cone of S in X at the point x. We next
describe a filtration of tX, which induces the canonical filtration of any normal cone
cAg by stratum-closures.

Relative tangent microbundle: Next, suppose that L is a stratum of X and let
Y = L be the stratum closure of L. Then Y is stratified naturally by the strata
of X given by the union of L and those strata of X that lie on the boundary of
L. The tangent microbundle for Y can be constructed as above, replacing X by
Y. We denote the tangent microbundle tY of Y by ¢(L; X) and call it the relative
tangent microbundle (relative to L). Note that ¢(L; X) is a microbundle over Y. If,
moreover, L is a dense stratum in X, then ¢(L; X) = tX.

Filtering the tangent microbundle: Observe that ¢{X admits a filtration by
t(L; X) for L varying over strata of X. Thus, ¢(L; X) is a sub(micro)bundle of tX
restricted to any stratum S < L, as

HL; X)|p =TS ® NL(5)

and
tX|s =TS ® Nx(S),

where Nz (5) and Nx(S) denotes the normal cone microbundles of the stratum S
in L and X, respectively. So t(L; X)|s C t(X)|s. For any particular stratum S
of X, the collection {¢t(L; X) : S < L} induces a filtration of the normal bundle
Nx (S) by the subbundles {Nz(S) : S < L}. These in turn induce the filtration
by stratum-closures {cA% : S < L} on any particular conical fiber cAg. Here A%
denotes the link of S in L.

5.2. Gromov diagonal normal construction for manifolds. We detail some
of the points made in Remark and briefly recall Gromov’s diagonal normal sheaf
construction in the manifold context before generalizing to stratified spaces. Recall
(Definition that if F is a continuous sheaf over a manifold M, then the sheaf P
over M x M is given by P(U x V') = Maps(U, F(V)). Further, the Gromov diagonal
normal sheaf F* is obtained by restricting P to the diagonal diag(M) C M x M.

Let p: E— M be a smooth fiber bundle over M and F be the sheaf of sections
of E, i.e. F(U) =T'(U; E), where the space of sections I'(U; E) is equipped with
the quasitopology inherited from Maps(U, E). Then

P(U x V) =Maps(U, F(V)) = Maps(U,I'(V; E)).
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Therefore, these consist of those maps U x V' — E for which the restriction to
{u} x V gives a section of F over V, for any u € U.

Recall that a collection of elements ¢; € P(U; x U;),i =1,--- ,m is consistent if
for all i # j, ¢; = ¢; on (U; NU;) x (U; NU;). Then F* can be described as follows.
For any open set W C diag(M), an element of F*(W) consists of a collection of
consistent elements ¢; € P(U; x U;) where {U; x U;} is a basic open cover of W in
M x M. Consistency of ¢; ensures that they define a well-defined germ of a map
(TW,Wy) — E at the zero-section Wy of the tangent bundle TW C T'M.

Let My denote the zero-section of TM. Then, (global) sections of F* may be
viewed as certain germs of maps ¢ : (TM,My) — E. The fact that the maps
U; x U; — E are sections when restricted to the second factor implies the following
two facts about the germ ¢ : (T'M, My) — E:

(1) ¢ is a section M — E when restricted to the 0-section My of TM.
(2) v is a germ of a section (T, M,0) — E when restricted to the tangent space
T,M CTM at pe M.

Replacing M by U, F*(U) consists of germs of mappings ¢y : (TU,Uy) — E
such that ¥y is a section of E when restricted to the 0-section Uy C TU and is a
germ of a section of E over a neighborhood of p when restricted to any tangent space
T,U for p € U. Thus, any element of 7*(U) consists of a section s of E over U
decorated with a collection of germs g, : (U,,p) — (E, s(p)) of sections of E. Here,

(1) gp is defined on some neighborhood U, of p € U, and sends p to s(p).
(2) p ranges over all U.

Therefore, we shall henceforth denote an element of 7*(U) as a tuple (s, {g, : p € U}).
It is convenient to imagine this data as a base section s : U — E of F with the
image s(U) C E decorated by a field of section-germs {g, : p € U}.

There exists a natural morphism of sheaves ¥, : 7* — Jg from F* to the sheaf
of r—jets of sections of E over M, essentially given by setting U,.(s,{g,}) equal to
the family of r-order Taylor polynomials of g, at p, as p varies over U. We state a
precise definition below:

Definition 5.1. For any (s,{g, : p € U}) € F*(U), define U,(s,{gp}) € T5U) to
be the section of the r-jet bundle of E such that at the point p € U, the section takes
the value Jy;g,. This defines a morphism of sheaves WV, : F* — Jp.

Proposition 5.2. ¥, : F* — Jp is a weak homotopy equivalence of sheaves.
Equivalently, for any r, the Gromov diagonal normal sheaf F* is naturally homotopy
equivalent to the sheaf Ji of r—jets of sections of I .

Proof. Consider the space C§°(R",R™) of germs of smooth maps from R” to R™
at the origin. Also, let Pj(R™,R™) C C§°(R™,R™) denote the subspace of germs of
polynomials (in n variable) of degree at most r at 0. Let T,.(f) denote the Taylor
expansion of f € C§°(R™,R™) at 0, truncated at degree r. Then

ft = TT(f) +t(f 7T7"(f))’t € [07 1]

furnishes a deformation retraction of C§°(R™,R™) onto Pj(R™,R™). As locally
F* and Jj are isomorphic, respectively, to the sheaves Maps(—, C§°(R™,R™)) and
Maps(—, P (R™,R™)), we conclude ¥, is a weak homotopy equivalence.
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Remark 5.3. In fact, o, : F* — J2°, sending (s,{gp :p € U}) € F*(U) to its
infinite jets is also surjective. If we restrict only to analytic sections, then ¥, is
moreover injective.

Uy o F* — Ji given by

\Ill(sa {gp}) = (8, {dgp})

is of particular significance. It replaces the germ-field {g, : p € U} decorating the
base section s by the tangent plane fields {dg, : p € U}.

5.3. Gromov diagonal normal construction for cones. We would like to ex-
tend the linearized notion of formal r—jets of sections ensured by Definition [5.1]
and Proposition from the manifold context to the context of a stratified bundle
P : E — X over a stratified space. However, a full linearization is not possible and
we shall provide a hybrid construction, interbreeding

(1) the linear structure within manifold strata provided by Definition and
Proposition [5.2]

(2) the germ construction in Remark for cones on links using the local
structure given by Corollary

In this subsection, we shall focus on the second ingredient, and in the next subsection
indicate how to assemble these two together. Let P : E — X be a stratified bundle.
For the purposes of this subsection, E = ¢B, X = cA, where E = B x [0,1)/B x {0},
and X = A x[0,1)/A x {0} and A, B are compact abstractly stratified spaces. Let
ca (resp. cg) denote the cone-point of cA (resp. ¢B). Let c¢B° (resp. cAY) denoted
the deleted cone ¢B\ {cg} (resp. cA\ {ca}).

By Corollary there exists a stratified bundle p : B — A such that (after
reparametrization if necessary), P(b,t) = (p(b),t). Hence, there exists a natural
stratified bundle P° : ¢B® — cA° induced by P.

Let F (resp. JFy,) denote the sheaf of controlled (resp. weakly controlled) sections
of P: EF — X in this case. Note that any section of P : cA(= F) — ¢B(= X)
necessarily sends c4 to cp. Let FO (resp. F2) denote the induced sheaf of controlled
(resp. weakly controlled) sections of P° : ¢B% — cA°.

We shall first inductively describe the Gromov diagonal normal sheaf for F° (resp.
FO) using the sheaf £ (resp. L,,) of controlled (resp. weakly controlled) sections
of p: B — A and Lemma Let £* (resp. L) denote the Gromov diagonal
normal sheaves of £ (resp. £,,). In particular, when A, B are manifolds, then (see

Section :
(1) p: B — A is a smooth bundle map,
(2) L =L, is the sheaf of smooth sections given by £(U) = T'(U, B)
(3) L* is homotopy equivalent to the sheaf J} of r—jets (Proposition .

Then controlled sections of P? : ¢BY — cA? are given by maps of the form
o : cA% — B of the form o(a,t) = (s¢(a),t), where s; : A — B is a controlled
section of p: B — A, i.e. ¢ is a continuous (0, 1)—parametrized family of sections
from A to B. The same holds for controlled sections of P : (P%)~1(U) — U for all
open U in cA?. Therefore, we have an isomorphism of sheaves F° =2 Maps?((0, 1), £),
where Maps? denotes the parametric sheaf as defined in Definition The following
is now an immediate consequence of Lemma



46 MAHAN MJ AND BALARKA SEN

Lemma 5.4. With F°, L as above, and open subsets V. .C A, and W C (0,1), we
have:

(FO)*(W x V) = Maps(W, £* (V).

Next, we describe the relationship between the sheaf of controlled sections and
the sheaf of weakly controlled sections. Suppose X = cA is equipped with a control
structure (i.e. both a projection 7 and a radial function p in a neighborhood of c4).
Let pa denote the radial function on a small neighborhood of ¢4 in cA. Without loss
of generality, by shrinking cA if necessary, we may assume that p4 : cA® — (0,1) is
a fiber bundle with fiber A. Pulling back p4 under P we obtain a radial function
pp =PopsoncB.

Assumption 5.5. Thus, without loss of generality, we assume that pg = P o py,
i.e. P is a controlled stratified bundle map from c¢B to cA in a neighborhood of c.
Further, P%: ¢cB% — cA® is a bundle map such that

pu(t,b) = t = pa(P°(t,0)).

We shall say that a section s : cAY — ¢BY is levelwise weakly controlled if
s({t} x A%) C {t} x BY for all t € (0,1) and the restriction s|({t} x A°) is a weakly
controlled map to {t} x B%. With the control structure on the domain and target
of P : ¢B — cA in place, the space of weakly controlled sections I',(cA°, cB?)
fibers over the space of levelwise weakly controlled sections I';(cA%, ¢BY). The fibers
of this fibration are given by reparametrizing the (0,1)—direction in cA®. More
precisely, there exists a surjection © : I'y,(cA°, cB?) — T'y(cA°, ¢BY), such that for
any o € I'(cA°, c¢B°), ©~ (o) = Maps(A, Diff 7((0, 1))), where Diff 7 ((0,1)) denotes
the orientation-preserving diffeomorphisms of (0, 1). Thus, there is a natural product
fibration:

T (cA® eBY) =Ty (cA®, cB®) x Maps(A, Diff 7 ((0,1)))
This is because T',(cA®, ¢B°) is a principal Maps(A, Diff"((0,1)))—bundle over
I';(cA% ¢B) equipped with a natural section given by the inclusion I'y(cA°, cB?) —
I, (cA% eBY) of levelwise weakly controlled sections into the weakly controlled
sections. Since Diff"((0,1)) is contractible, we obtain a homotopy equivalence
between Ty, (cAY, cBY) and T'y(cA°, c¢B°). Consequently, we obtain

Corollary 5.6. With F0 L, as above, and open subsets V C A, and W C (0,1),
we have
(F2)* (W x V) = Maps(W, (Ly,)* (V).

Definition 5.7. The space of germs of controlled (resp. weakly controlled) sections
of P:cB(=E) = cA(= X) will be denoted by T'c(cA,cB) (resp. I'c(cA,cB)).

We are now in a position to note the following Proposition which allows us
to assemble the descriptions in Lemma [5.4] and Definition [5.7} This is useful in
providing an inductive description of the Gromov diagonal normal sheaf of sections
of a stratified bundle.

Proposition 5.8. Any element of the sheaf F*(U) (resp. Fi(U)) for an open
U C cA determines and is determined by the following:

(1) a controlled (resp. weakly controlled) section s over U. In particular, if
U=cA, s:cA— cB is a global controlled (resp. weakly controlled) section,

(2) a germ at ca given by an element of T'c(cA,cB) (resp. T'c.(cA,cB)) if
cp € U,
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(3) an element of (FO)* (resp. (F2)*) whose first coordinate (as in Remark
coincides with the restriction s|u\ e,y -

Proof. For concreteness, we work with F and F*. The same argument works for F,,
and F;,. Further, Equation [5.3] really ensures that up to homotopy, these sheaves
are the same, as we can apply induction (on depth) to weakly controlled sections
from A to B in Equation [5.3

We use the description of the Gromov diagonal normal sheaf from Remark [4.4}
any element of F*(U) consists of a controlled section s over U decorated with germs
of sections {g,, : w € U}. The controlled section s over U contributes item 1 in the
statement. Next,

(1) For w = ca, gy is given by an element as in item 2 in the statement.
(2) For U =U\{ca}, {gw : w € U’} constitutes an element as in item 3 in the
statement.

Finally, we observe that the choices in items 2, 3 are independent. Hence any choice
as in items 2, 3 subject to the choice of a section s as in item 1 furnishes an element
of F*. (]

Proposition [5.8] allows us to decompose elements of F* into two independent
components. Item 2 provides a purely topological component of F*. This component
cannot be linearized to germs in general. Item 3 on the other hand is defined
inductively, and is decomposable, albeit implicitly. Hence Item 3 is again a hybrid
of objects as in Item 2 and Item 3, where the latter has ‘less complexity of nonlinear
objects’. The case where A, B are manifolds is the lowest complexity case. In this
case, Proposition provides a completely linear description as a sheaf of jets
(linearized germs). We note, however, that this last linear description is true only
up to homotopy equivalence.

Note also that for manifolds, elements in F*(U) may be identified with U-
parametrized sections from the tangent space T,U — E provided there is a way (e.g.
a connection) of identifying T,U and T,U for all p,q € U. Regarding the tangent
bundle TU as the germ of a neighborhood of the diagonal diagU C U x U, elements
in F*(U) are thus equivalent to U—parametrized sections of E over the normal
space N, ) (diagU) to the diagonal at some point (p,p) € diagU.

Suppose F is a sheaf of topological spaces over a manifold M such that the
inclusion F C F* has an inverse given by a retraction of sheaves r : F* — F so that
r is a fibration. Let P denote the sheaf over M x M given in Section Define a
stratification of X = M x M with strata S = diag M and L = (M x M)\ S. Then
we define a stratified sheaf R over X so that

(1) RIL="P

(2) RIS=F

(3) the restriction map from R|L to R|S is given by first restricting P to S, to
obtain F*, and then composing with the fibration r.

Then (Definition [3.12) R is infinitesimally flexible across strata.

5.4. Gromov diagonal normal construction: general case. For the purposes
of this subsection, (E,Xg,Ng) and (X, ¥ x,Nx) are abstractly stratified spaces
(see Definition for notation) and P : E — X is a stratified fiber bundle. Then,
Lemma [2.15 and Corollary give us the following commutative diagram.
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T

cB N S
Pl Pl Pl’
cA N ul S

where the horizontal rows are fiber bundles.

Recall (Remark that a formal section of P : E — X on an open subset
U C X is a germ of a continuous map s* : Opyyy(diag(U)) — E from the germ of
an open neighborhood Opy, . ;(diag(U)) of the diagonal diag(U) C U x U such that

(1) s:U — E defined by s(u) := s*(u, u) is a section of E over U.

(2) For every u € U, s, : Opy(u) — E defined by g, (v) = s(u,v) is a germ of
a section of E in Opy(u) € U.

(3) For every stratum S € ¥ x of X intersecting U, s is smooth on S’ = SNU,
ie. s*| Opg g (diag(S’)) is a smooth germ of a map to the unique manifold
stratum S C E containing s(.5).

Henceforth, in this subsection, we shall refer to s as the base of the formal section.

Definition 5.9. A formal section s* is called a holonomic section of P : E — X
over U if

5" Op(u) = gu
forallueU.

Let s* be a formal section of P : E — X over X. For every stratum S, we
can restrict s* to Opg, x(diag(S)). Note that Opg, x(diag(S)) is isomorphic as a
microbundle to

(S x S, p1,diag(S)) @ (Ns, 7s,0s),
where Ng is the normal neighborhood of S (cf. Definition and Og is naturally
identified with S C Ng. Here, Ng is thought of as the (micro)normal bundle to S
in X with fiber cA, where A is the link of S (see, for instance, the commutative
diagram above).

Definition 5.10. Using the microbundle-isomorphism
Opsyx x (diag(S)) = (S x S, p1,diag(S5)) & (Ns,7s, 0s),

(1) restricting s* to the first component, we obtain the tangential formal section

551+ Opgxs(diag(S)) — E, with base section sg;

(2) restricting s* to the second component, we obtain the normal formal section

55, OPpg (0s) — E, with base section Sg,.

(3) 85, and s§, have the same base section s§ |05 = s§ | diag(S) = ss.
Remark 5.11 (Normal formal is holonomic). Restriction of the normal formal
section 8§, : Opy,(0s) — E to the fiber ¢, A = cA(z) C Ng of the normal bundle
over a point € S is a germ of a controlled section s§ ,,| Op,4(,) (%) of the conical

component of the stratified bundle (I, P5) : ¢cB — cA near the cone point {c,} C cA.
Thus, for an open chart V' C S around x, we obtain a map:

¢y : V = Te(cA, cB), ¢(x) :=85,,| OPea(a ()

On the other hand, the restriction of the normal formal section sg,, to the zero
section 0g C Ng of the normal bundle returns the base sg of the formal section.
Therefore, s§ ,,[v is a germ of a holonomic section around V' x cA = 75" (V) C Ng,

(SS|V3¢)V) : OpVXcA(V X 0) — E.
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We pause to emphasize that while this says that s% , is globally a (germ of a)
holonomic section of E over Ng, there is not a meaningful way to write s§,, as a
section of E over S (namely, sg), together with a S—parametrized family of sections
in T'.(cA, ¢B). For one, observe that the bundle homomorphism P : P~'(Ng) — Ng
does not induce a unique map (I, P;) : ¢B — cA between the normal conical
fibers, but rather a unique equivalence class of such maps under Homeo.(cA)— and
Homeo.(c¢B)—valued cocycles acting on the domain and range, respectively.

In general it is not possible to recover the germ s*| Opgy x (diag(S)) from the
tangential and normal formal sections. However, for any € > 0, s*| Opg, x (diag(S))
is e-close to s*g ¢ @ s*s, by continuity in the C%-norm. Here,

S*S,t 7] S*S,n(x7yaz) = (S*S,t(xay)75*57n(xvz)) € NS cEk

for x € S, y € Opg(x), 2 € Op.u(,) (), where cA(z) = 7~ (z) (cf. commutative
diagram above). For Definition @ below, we assume that X, E are equipped with
a metric as at the end of Section [2.4] Further, when we say that two formal sections
are e-close, it is in the sense of closeness with respect to such a metric.

Definition 5.12. Let s* : Opx, x(diag(X)) — E be a formal section of P: E — X
over X. Let S < L be a pair of strata in X. The §—neighborhood of S in L will be
denoted as Ns(S,L). We shall say that s* is of regularity C" if for all pairs S < L
and € > 0, there exists § > 0 such that
(1) $5,INs(S, L) : N5(S, L) — E is smooth on the open stratum L,
(2) s5,®(85,INs(S, L)) is e-close to s, in the C" norm. We shall summarize
this condition by saying that s} , is C"—asymptotic to s§, @® (5 ,,|Ns (S, L)).

The sheaf of C"—regular holonomic (resp. formal) sections over X will be denoted
as F, (resp. F;). Let W C X be open equipped with the inherited stratification.

Definition 5.13. For every stratum S C W of W, and a section s : W — E,

(1) Let Ag be the link of S in X,

(2) Let S be the unique stratum of E containing s(S),

(3) Let Bg be the link of S in E,

(4) Let p= (I, P2) : cBs — cAg be the restriction of P: E — X.
Let r > 1. An element of Strat J" (W) consists of a section s : W — E decorated
by the following data corresponding to every stratum S C W:

(1) A normal formal section s, : Opy,(0s) — E with base s,

(2) A formal r—jet os € J5(S) of the fiber bundle P : P~1(S) — S.
such that the following compatibility condition is satisfied. For every stratum S C W,
consider og as an element of the sheaf of formal sections of E over S. Then, for
any pair of strata S < L of W,

oy, is C"—asymptotic to o5 ® 53,
We summarize the condition by saying {os} is normally C"—compatible.

Proposition 5.14. For any r > 1, the sheaf F" is homotopy equivalent to Strat J .

s

Proof. Consider the homomorphism of sheaves ® : F* — Strat J" given on an open
set W C X by ®(W) : Ff(W) — Strat J" (W), where

W) (s%) = (s, {s5,n}, {J"(s5)})
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Here, for every stratum S C W, s, and sg, denote respectively the normal
formal and tangential formal components of s* along S. Also, J"(s§ ;) denotes
(85,6,{J"gp : p € S}) where we use the description s§, = (ss,{gp : p € S}) of the
tangential formal section as a base section on S decorated by a germ-field of sections,
as in Section This is a well-defined map, by normal C"-compatibility (Definition
5.13)).

The candidate for a homotopy inverse is given by the inclusion ¢ : Strat J" — F
as a subsheaf, by considering a formal r-jet as a formal section. Observe that
®o. = 1Id. To demonstrate that o ®(W) is homotopic to the identity map, we follow
the proof of Proposition For every stratum S of W, consider the straightline
homotopy

Fiy(s%) =ts" + (1 =1)(J"(s5) © 55,), T € [0,1]

This establishes the desired deformation retract on every stratum. (I

Remark 5.15. Specializing the constructions of this entire section to the case of
a manifold with corners, or even more specifically, to a simplex, the inductively

defined structure given by Propositions and simplifies considerably,
giving families of flags of tangent spaces. This answers Sullivan’s question [I.3.

6. HOLONOMIC APPROXIMATION THEOREM AND OTHER CONSEQUENCES

6.1. Flexibility of jet sheaves. Let P: E — X be a stratified bundle (Definition
. Let F and F,, denote respectively the stratified continuous sheaves of
controlled and weakly controlled sections of P. Let Hy, H; o, T, T o, denote the
stratified continuous sheaves of controlled holonomic, weakly controlled holonomic,
controlled formal and weakly controlled formal sections of P as in Section Also,
let Strat 7" denote the stratified sheaf given by Definition IfP:EFE— Xisa
stratified fiber bundle with manifold fibers, the sheaf of all stratified r—jets will be
denoted as JJ. (The sheaf JJ is of relevance in the example of a compact Lie group
acting on a manifold E with quotient a stratified space X.) For any stratum L < X
let Er denote the induced stratified bundle Py, : P~1(L) — L. Replacing X by L,
we have induced sheaves F|L, Fy L, T5| L, Tg | L, Hy |L, Hip o, |L, TG | L, Strat T | L.
We shall abuse notation slightly and refer to the stratified sheaf given by the
collections of induced sheaves

{F|L, Ful L, TET, Tp oo B H T Hy o | T, TG | T, Strat T |T 2 L < X}

also by F, Fu, Tis T s Hips Hip s Jo - Strat J". It will be clear from the context
whether we are referring to the sheaf or the stratified sheaf over X. We record the
following observation for concreteness:

Observation 6.1. F and F,, are isomorphic to H" and H, respectively.

The morphism from F to H" is obtained by adjoining r—jets of holonomic sections,
and that from H" to F forgets the decoration.

Definition 6.2. If X is a manifold, a differential relation O (of order r) is a
subsheaf of Jy .

For a stratified space X, a stratified differential relation {O : L < X'} (of order
r) is a stratified subsheaf of Strat J".

We shall need an auxiliary combinatorial organizational tool.
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Definition 6.3. Let (X, X)), (Y,X') be abstractly stratified spaces. A configuration
of indexing sets, or simply, a configuration, is a set-map ¢ : ¥ — X' between the

indexing sets X, %', We shall say that a stratum-preserving map f: X — Y is of
configuration ¢ if f(S) C ¢(S) for all S € X.

Let (X,X), (E,%') be the stratifications of X, E. We assume, henceforth, in this
subsection, that a configuration ¢ : ¥ — Y’ is fixed, and that the sheaves F, F,, are
implicitly decorated with an arbitrary, but fixed configuration c¢. For E a manifold, G
a compact group, and X = F/G, the configuration ¢ (used to determine F or F,,)
is uniquely determined by P. This is because the fibers of P : E — X are manifolds,
in particular fibers have a single stratum. Hence, ¢ : ¥ — Y’ is automatically fixed.

Theorem 6.4. With the assumptions above, the stratified sheaf F is flexible. In
particular, it satisfies the parametric h—principle, i.e. F < (F)* ~ Strat J" is a
weak homotopy equivalence. (Hence, by Observation?{r is flexible).

The proof we give below also shows, mutatis mutandis, that F,, is flexible. We
first prove F is stratumwise flexible. We begin by proving two general lemmas
pertaining to flexibility.

Lemma 6.5. Let F be a fixed quasitopological space. Let Maps(—, F') be the sheaf
over a locally compact topological space X given by

Maps(—, F)(U) := Maps(U, F').
Then, Maps(—, F) is flexible.

Proof. Let K1 C Ks be a pair of compact subsets of X, and W be a topological
space. Suppose ¢ : W x I — Maps(—, F)(K1) is a homotopy with a given initial lift
o : W x {0} — Maps(—, F')(K3) of |W x {0}. By local compactness of X,
Maps(—, F))(K;) = lim Maps(U, F;)
UDK;
= lim lim Maps(U, F;)
UKk’ K'OK;
=1 lim Maps(U, F;)
K'DK; UDK’
= lim Maps(K', F)
K'DK;
where K’ varies over compact neighborhoods of K;,7 = 1,2. Therefore, we may
find compact neighborhoods K| O Kj, K} D K, such that ¢ factors through
¢’ W x I — Maps(K{, F') and g factors through ¢ : W x {0} — Maps(K}, F').
By further shrinking K71, K} if necessary we may ensure K| C K} and 1{ is a lift of
¢'|W x {0} to K.
Since K1 C K} is a compact inclusion and hence a cofibration, by [May99} pg. 50],
Maps(K%, F') — Maps(K7, F) is a fibration. Therefore, ¢’ admits a lift ¢’ : W x I —
Maps (K%, F') such that ¢'|W x {0} = ¢(. Let ¢ : W x I — Maps(—, F')(K3) denote
the germ of ¢ around Ky. Then ¢ : W x I — Maps(—, F))(K3) is a lift of ¢, with
PY|W x 0 = 1)p. This proves Maps(—, F')(K2) — Maps(—, F')(K) is a fibration,
establishing flexibility of Maps(—, F). O

Lemma 6.6. Let F,G be flexible sheaves on a locally compact topological space X .
Then F x G is flexible.
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Proof. Let K1 C Ky be a pair of compact subsets of X. By hypothesis, the
restriction maps F(K3) — F(K1) and G(K3) — G(K) are fibrations. Therefore,
as a product of fibrations is a fibration,

(F x G)(K3) = F(K2) x G(K3) = F(K1) x G(K1) = (F x G)(K1)
is a fibration. This proves the lemma. O
Corollary 6.7. F is stratumwise flexible.

Proof. Since each stratum S is a manifold, and F|g is a genuine smooth bundle,
let Fs denote the fiber of E|S. Note that Fs = i*Fg is the sheaf of sections of
E|S over S. Given any x € S we may choose an open neighborhood U around x
over which U trivializes. Therefore, i5;Fg = if; Maps(—, Fis). Hence, Fg is locally
flexible by Lemma [6.5] Global flexibility now follows from Gromov’s localization
lemma [Gro86l p. 79].

Alternately, partition of unity directly allows us to glue families of sections
over a family of sets to extend families of sections, and hence establish that Fg is
flexible. (Il

Proof of Theorem[6.] Let x € X be a point, and S be the unique stratum contain-
ing . Let us choose a neighborhood W C X of  such that W =2 V x cA, where
V =WnNS and cA is the normal cone of S in X. Then F(W) is the quasitopological
space of sections of E over W. We obtain a map

resyy @ F(W) — Fs(V)
by restricting a section of E over W to a section of E|g over V C S. Explicitly, let
s:VxcA=W — E be a section in F(W). Let S be the unique stratum of E
containing s(V'), and ¢B be the normal cone of S in E. Then by the local structure

of stratified bundles, s(v,a) = (t(v), f(v,a)) for all (v,a) € V x cA where t : V — §

is a section and f : V — I'(cA,cB) is a V—parametrized family of sections of E

over cA. The map above is given by resl? (s) = t. Consequently, res{//v is equivalent

to the following product fibration, given by projection to the first factor
Fs(V) x Maps(V,T'(cA, E)) — Fs(V).
As a corollary, we obtain F(W) = F(V) x Maps(V,I'(cA, E)). As this isomorphism

is natural under restrictions to open subsets W' c W, V/ = W' NS C V, it
establishes an isomorphism of sheaves

iy F =iy Maps(—,I'(cA, E)) X ijyFs

By Lemma Maps(—,T'(cA, E)) is flexible and by Corollary Fs is flexible.
As restriction and products of flexible sheaves are flexible, we obtain ij, F is flexible.
Therefore, F is locally flexible and hence by Gromov’s localization lemma [Gro86,
p. 79|, F is flexible. O

A description of H:
Let S < L denote strata of X. Let ’Hé denote the restriction of

Hg := hofib(iLFy — F)
to the topmost stratum of definition of ﬂg, i.e. to the (open) stratum S. Equivalently,
HE = hofib(i5Fy — Fs),
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where we assume that a section ¢¥g € Fg(5) has been fixed, and homotopy fibers
are computed with respect to ¥g.

Let U C S be alocal (Euclidean) chart. Note that a small normal neighborhood of
U in L is of the form U x cA%, where A% is the link of S in L. Then a neighborhood
Ngy, of Sin L is an AL—bundle over S. Let S’ be the unique stratum in E containing
¥(S). Let Bg be the link of S” in E. Then HE(U) = HE(U,¢s) consists of two
components:

(1) A section of E over Ngr,(U) restricting to 1g|y over the zero section U C
Ngr,(U). Germinally, this is equivalent to a map from U to I'.(cA%, cBg/)
as in the proof of Corollary above. Note that by Lemma the sheaf
Maps(—,.(cA%, c¢Bg) is flexible. We shall refer to this as the germinal
L—component.

(2) A path of sections over U in Fg starting at ¢g|U, i.e. a continuous map
h:]0,1] = Fs(U), such that h(0) = ¢g|U. Let Py(U) denote the collection
of such maps.

Let G be a sheaf on S defined by
g(U) = Py(U).
Lemma 6.8. G is flexible.
Proof. We note that for U a local chart, the restriction Gy of G to U is given by
Gu(V) = Maps (I x V,{0} x V), (Fs,1s)).

The homotopy extension property from subcomplexes of S to the fiber Fg then
gives the lemma.
Alternatively, we may use Lemma to deduce the lemma. O

Using the proof of T heorem we can explicitly compute the homotopy fiber H%
for the sheaf F of sections of P : E — X. Indeed, observe that for quasitopological
spaces X,Y, the homotopy fiber of the product fibration X x Y — Y over a point
y € Y is homeomorphic to X x P,Y, where P,)Y C Maps(I,Y) consists of the
collection of maps v : I — Y with 4(0) = y, with the inherited quasitopology.
Therefore,

HE = Maps(—,T.(cA%, cBsi)) x G.

Proposition 6.9. HE is flexible.

Proof. By Lemma Maps(—,.(cA%, cBg)) is flexible. By Lemma G is
flexible. Therefore, using Lemma we conclude HE is flexible. O

Recall Gromov’s convention [Gro86, Section 1.4.1] of referring to an arbitrarily
small but non-specified neighborhood of a set K C X by Op K. The following are
direct adaptations of Gromov’s definitions of the smooth h-principle for manifolds
from [Gro86, p. 37] to the stratified context. We spell these out for completeness.

Definition 6.10. A stratified differential relation R is said to satisfy the

(1) stratified h-principle near a subset K C X if for every section ¢ : U(K) — R
on a neighborhood U(K) of K, there exists an open neighborhood U’ of K,
such that ¢|y: is homotopic to a a holonomic section.
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(2) stratified parametric h-principle near K if the map
f—=Jf

from the space of solutions of R on Op K to the space of sections Op K — R
is a weak homotopy equivalence.

(3) stratified h-principle for extensions of R, from K; to Ko D K if for every
section ¢y : Op Ko — R which is holonomic on K1, there exists a homotopy
to a holonomic section ¢1 by a homotopy of sections ¢y :,0Op Ky — R,
t € [0,1], such that ¢| Op Ko is constant in t.

(4) parametric stratified h-principle for extensions of R, from K to a Ky D K3
if the map f — Jj from the space of solutions of R on K3 to the space
of sections Op Ko — R which are holonomic on K1, is a weak homotopy
equivalence.

6.2. Holonomic approximation for jet sheaves. We turn now to generalizing
the smooth versions of the h-principle due to Eliashberg-Mishachev [EMO01], [EMO02]
to stratified spaces. The following is the holonomic approximation theorem for
smooth bundles over smooth manifolds.

Theorem 6.11. [EMO0I, Theorem 1.2.1][EM02, Theorem 3.1.1, p.20] Let V be a
manifold, E — V be a smooth bundle, and K C V be a polyhedron of positive
codimension. Let f € J5(Op K) be a formal section. Then for any e > 0, § > 0,
there exist a diffeomorphism h :V — V with

[|h —Id||co < 6,

and a holonomic section f € J5(Op K) such that

(1) the image h(K) is contained in the domain of the definition of the section
f, and

(2) [If = FIOp (K)o < e.
In fact, h may be chosen as the time one value of a diffeotopy hy : t € [0,1], with hg
equal to the identity, hy = h, and for all t € [0,1],

(1) the image hy(K) is contained in the domain of the definition of the section
f, and
(2) 1he — 1|0 < 6.

Recall that diffeotopies are smooth 1-parameter families of diffeomorphisms
[Gro86l, p. 37].

Definition 6.12. Let S be a stratum of a stratified space X, with link A, and Ng
a normal neighborhood of S in X; hence Ng is a cA—bundle over S. Fix local
trivializations {U;} and compatible local product metrics (g%, gt ) on U; x cA C Ng.
A stratified diffeotopy {hs : t € [0,1]} of X supported in Ng is said to be normally
e—small in the C" norm if the following hold.

(1) diam(he(s) :t €[0,1]) < e for all s € U; x cA C Ng and all i.

(2) Let ¢(,q) : cA(x) — cA(hs(x)) denote the map induced by hy from the cone
cA(x) at the point x € S to the cone cA(hi(x)) at the point hy(x) € S. We
demand that for all strata J of cA\{ca} andy € J, the C"—norms of ¢ )
are bounded above by ¢ for all z € S and t € [0, 1].
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Note that the conclusion of Theorem only ensures C°—closeness in the con-
clusion. However, Definition [5.12f allows us to introduce the notion of C" —closeness
of formal sections in the normal direction.

Definition 6.13. We shall say that a pair of C”-regular formal sections ¢, of
P:FE — X over U C X are normally € C"-close if

(1) The continuous maps ¢| diag(U) and 1| diag(U) are e-close in the C°-norm

(2) For every pair of strata S < L intersecting U, and S’ = SNU, L’ = LNU, the
germs ¢si n, Vg are CT—asymptotic (cf. Definition , in the following
sense: for every e1 > 0, there exists 6 > 0 such that ¢g ,,|Ns(S’, L") and
s n|Ns(S', L") are e1-close in the C"-norm.

Remark 6.14. If for every stratum S of X intersecting U, ¢|s,¥|s are C"-close,
then ¢, are normally C"-close as well. The converse need not be true.

To extend Theorem to stratified spaces, we need some basic differential
topology facts about stratified spaces. The following allows us to extend diffeotopies
across strata.

Lemma 6.15. Let (X,X,N) be an abstractly stratified space and S € X be a
stratum. Let h : S x I — S be a diffeotopy of S supported on a compact set K C S.
Then there exists an extension of h to a stratified diffeotopy H : X x I — X. If h is
C°-small, the extension H is normally C"—small for any r > 0. Moreover, if h is
C"-small, H is stratumwise C"—small as well.

As a prerequisite to the proof and for later use as well, we will state and prove a
general result regarding fiber bundles. The main content of this result is a fiber-
preserving analogue of the homotopy extension property. To set it up, let p: £ — X,
p' : E — X' be fiber bundles with fibers spaces Y and Y”, respectively. Fix basepoints
y €Y,y €Y’ and suppose furthermore that p, p’ have as their structure groups the
groups of basepoint-preserving homeomorphisms Homeo(Y,y) and Homeo(Y”,y’),
respectively. Let s : X — E,s' : X’ — E’ denote the canonical sections of p and
p’ parametrizing the fiberwise basepoints. Note that p xid : Ex I — X x [ is
also a fiber bundle with fiber space Y and structure group Homeo(Y,y), with a
canonical section s x id : X x I — E x I traced out by the fiberwise basepoints, as
before. Further, suppose X, X', E, E/ are equipped with metrics compatible with
their topology.

Lemma 6.16. Suppose f: X — X' and g: E — E' are maps such that

(1) g covers f, i.e. pog= fop, and

(2) g preserves the sections s,s’, i.e. gos=5"o f.
Let F: X x I — X' be a homotopy such that F|X x {0} = f. Then, there exists a
map G : E x I — E' such that

(1) G covers F, i.e. po F =G o (p xid), and

(2) G preserves the sections s X id, s’, i.e. Go (s xid) = s o F.
Moreover, if diam(F ({z} x I)) < € uniformly for all x € X, then we may choose G
such that diam(G({e} x I)) < e uniformly for all e € E.

Proof. Consider the fiber bundle F*E’ over X x I. This is a principal Homeo(Y”, y)-
bundle over X x I which restricts to f*E’ over X x {0}, therefore there is an
isomorphism of principal Homeo(Y”,y')-bundles (f*E’) x I — F*E’ over X x I.
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The map g : E — E’ covering f : X — X’ furnishes a fiber-preserving map
h: E — f*E’ covering the identity map on X. We collect all these maps in the
following commutative diagram:

ExI XY (pEyxT —=— F*E —— F

o] ! |

X x1T XxI — xXxI 24 x

Let G : E x I — E’ be the composition of the three horizontal arrows on the top.
Then by commutativity of the outer rectangle, G satisfies Condition (1). Next,
observe that the leftmost and the rightmost squares satisfy Condition (2). Indeed,
the canonical sections of F*E’ and (f*E’) x I are furnished by the basepoint 3’ as
their structure groups are in Homeo(Y”,y"). The middle square is an isomorphism
of principal Homeo(Y”, y’)-bundles; hence it must necessarily preserve the relevant
canonical sections. This proves that G satisfies Condition (2) as well.

For the final assertion, observe that as F'(-,t) stays uniformly e-close to f for
all t € I, the cocycles of F*E’ are e-close to those of (f*E’) x I. By the proof of
Proposition 1.7 in [Hat17) p. 20], we see that this implies that the fiber-preserving
homeomorphism (f*E’)x I — F*E’ of the top horizontal arrow in the middle square
can be chosen to be uniformly e-close to identity, where both sides are consider as
metric subspaces of E’ x X x I. Thus, the composition of the last two top horizontal
arrows (f*E') x I — E’ is uniformly e-close to the map induced by the constant
homotopy X x I — X', (x,t) — f(x). The image of {z} x I C (f*E') x I — E'
under the latter has diameter 0. Therefore, under the former, it has diameter
uniformly bounded by e. This shows that the composition G : F x I — E’ satisfies
the desired property diam G({e} x I) < ¢ for alle € E. O

Proof of Lemma[6.15 Let A denote the link of S in X. A tubular neighborhood
Ng of §'in X is a cA-bundle over S, i.e. a fiber bundle over S with fiber cA (cf.
Corollary 2.18). The structure group of this bundle is Homeo(cA, {c4}) where
{ca} C cA is the cone point. By Lemma [6.16] we can extend h: S x I — S to a
homotopy f : Ng x I — Ng. Moreover, since h(-,t) is a diffeomorphism, f(-,t) is
an isomorphism of bundles, for all ¢ € I.

Next, we construct a stratified diffeotopy h : Ng x [0,1] — Ng by defining iL(ﬂC, t) =
f(x,3t) for (z,t) € Ng x [0,1/3], h(z,t) = f(x,2 — 3t) for (z,t) € Ng x [1/3,2/3],
and fz(m,t) =z for (z,t) € Ng x [2/3, 1], smoothing at Ng x {1/3} and Ng x {2/3}
if required. We extend to a diffeotopy H : X x I — X by defining H(x,t) = x for
allz € X\ K and t € [0, 1].

We now prove the second assertion. Note first that Ng is equipped with a
continuous metric that is stratumwise smooth. We can change the metric to an
equivalent metric that is locally a product metric on Ng|K thinking of Ng as a
cA bundle over S to satisfy the conditions of Definition [6.12] Then, locally on any
U x cA we extend h by the identity on the second coordinate. The resulting extension
is then normally trivial, in particular, normally C"—small on Ng|K. Completing
the extension to a diffeotopy H : X x I — X as above, we see that H is normally
C"—small for any r > 0.

Finally note that for any stratum L such that S < L, the C"-distance of H(-,t)
and id on L is comparable to the sum of the C"-distance restricted to S and the
normal C"-distance. The last assertion follows. (]
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Combining Theorem [6.11] and Lemma [6.15] we have:

Corollary 6.17. Let X, S be as in Lemma[6.15 above, P : E — X be a stratified
bundle, and K C X be a substratified space of positive codimension. Let A denote
the link of S and Ng a normal neighborhood of S given by a cA—bundle over S. Let
Ks=KnNS, and let N(Kg) denote the restriction of the bundle Ng to Kg. Let
f € Strat J5(0Op K) be a C"—regular formal section. Then for any € > 0,5 > 0,
there exist

(1) a diffeotopy hy : S — S with h = hy and ||hy — Id||co < 6 for all t € ]0,1],

(2) an extension Hy : X — X of hy supported in a small neighborhood of N(Kg),

and a holonomic section f € Strat J%(Op Kg) such that

(1) the image h(Kg) is contained in the domain of the definition of the section
f

(2) [|f = f1Opx h(Ks)l[co <€,

(3) f and f|Opx h(Ks) are normally C"—close on Ng.

Proof. The existence of a diffeotopy h: : S — S with ||h; — Id||co < § such that

(1) forallt € [0, 1], the image h:(Kg) is contained in the domain of the definition
of the section f, and

(2) there exists a holonomic section fs : Opg h(Kg) — E such that ||fs —
f1Ops h(Ks)lco <&,

is guaranteed by Theorem Note that so far ]?5 is defined only on S, and the
neighborhood Opg h(Kg) is only taken within S.

It remains to extend fg into Ng and extend the neighborhood Opg h(Kg) to
an open neighborhood Opy h(Kg). We first apply Lemma to hy to obtain a

stratified diffeotopy H; such that

(1) H, is supported in a small neighborhood of N(Kg) C Ng.
(2) H; is normally C"—small.

Let H = H;. Then the first item above guarantees that H is defined and possibly
unequal to the identity on N(Kg). Let cA(z) denote the normal cone of S in X at
z. Note that H(cA(z)) = cA(h(z)) (in fact, the proof of Lemma [6.15 shows that H
may be chosen to be the identity in the normal coordinate).

To extend fg into Ng holonomically, it suffices to define a holonomic extension
of fs on the restriction of Ng to Kg. By Remark the normal formal section
fsn associated to f is a holonomic section of E over Ng. Our main strategy

here is to “graft the conical component of fs, with fs” to build a section f :
Opx h(Kgs) = E. The associated holonomic stratified r-jet would be the desired

element f € Strat J"(Op Kg). We accomplish this in an indirect manner in light of
the warning at the end of Remark

As fg and f|S are e-close as formal r-jets, the sections ﬂg and fs, from
Opg(K) — E are e—close as well. Let S denote the unique stratum containing

the image of S under f| s and fg,. (The existence of such an S is guaranteed if
¢ > 0 is sufficiently small.) Let us moreover fix an open neighborhood U C S of

Kg in S which is contained in the domains of definition of both ﬂ s and fg,. Let
o :U x I — S be a homotopy through sections o, : U — S, between oy = fs, and



58 MAHAN MJ AND BALARKA SEN

o1 = f| s. By Lemma , there exists an extension
0:Ns(U)xI—=NzgCFE

where Nz is the normal cone bundle of S in E, and Ng(U) denotes restriction
of Ng to U. If ¢ > 0 is sufficiently small, we may ensure that h(Kg) C U. Let
f = 51| Opx h(Kg). Then f is a holonomic extension of fg|Opy h(Kg) into a
neighborhood of Kg in X. Therefore,

(1) f is holonomic on Opy h(Kg) by construction.
(2) Since f is C"—regular by hypothesis and equals f on germs of normal cones
on S, f and f are normally C"—close on Ng.

This completes the proof. ([l

It is a well-known fact that for a smooth bundle P : E — M over a compact
manifold M, any two sufficiently close sections s1,ss : M — E are smoothly isotopic
through sections. To see this, fix s1 (M) = M; C E, and let N.M; C E be a regular
normal neighborhood obtained, for instance, by equipping F with a Riemannian
metric, and using the exponential map exp to exponentiate from the normal bundle
NgM, to My down to E. Let H; denote the linear homotopy on NgM; that
collapses all the linear fibers down to M (identified with the zero section of NgMy).
If s9(M) C N.Mj, then expoH,; o exp~ ! gives a smooth isotopy of sz to s1.

The same proof generalizes in a straightforward way to stratified spaces. Let
P : E — Y be a stratified fiber bundle over a compact stratified space Y and
s1:Y — E be a stratified section. Let s1(Y) = Y;. Embedding E in a smooth
manifold E' by Theorem equipping E’ with a Riemannian metric g, and
restricting g to E, we obtain a stratumwise Riemannian metric g5 on E. Let
N_.Y; C F be a regular normal neighborhood of Y7 in E obtained by exponentiating
the stratumwise normal bundle with respect to the stratumwise Riemannian metric
gs. Then a fiberwise linear homotopy exists as in the manifold case. This establishes
the following.

Lemma 6.18. Let P: E — Y be a stratified fiber bundle over a compact stratified
space Y and s1 1 Y — FE be a smooth stratified section. Further, assume that
FE is equipped with a metric ds that is stratumwise smooth Riemannian. Let sy :
Y — E be a smooth stratified section. Then for all € > 0 there exists § > 0 such
that if ds(s1(y),s2(y)) < 0 for all y € Y, then there exists a stratified isotopy
H:Y x[0,1] — E such that

(1) H(y,0) = s1(y)

(2) H(y,1) = s1(y)

(3) ds(s1(y), H(y,t)) <e forally €Y and t € [0,1].

Remark 6.19. Compactness is not essential in the proof of Lemmal[6.18 All that
was required was the existence of a normal neighborhood as the image of an open
neighborhood of the zero-section. This goes through for Y non-compact as well
provided we allow the thickness of the open neighborhood to be non-constant.

As a consequence of Lemma [6.18 we have the following:

Corollary 6.20. Let P : E x (—¢,1+¢) =Y X (—¢,1 4+ ¢) be a stratified fiber
bundle over a stratified space Y x (—e,1+¢€), where Y is a compact stratified space.
Let s1,82: Y x (—e,1+¢€) = E x (—¢,1+¢€) be two stratified smooth sections that
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are 0—close in the C"—norm. Then there exists a section s3:Y X (—e,1+¢) —
E x (—e,1 4 ¢€) such that s3 interpolates smoothly between s1, sa, i.e.

(1) s3/(=¢,0] = s1|(—¢,0]

(2) s3l[1,1+¢) = 5[1, 1 +¢)

(3) s3 is d—close to both s1,s2 in the C"—norm.

More generally, if there exists a stratum S of Y and a submanifold S’ of S such
that s1|S" x (—e,14¢€) and s2|S’ X (—&,1+¢€) are 6—close in the C"—norm, then
there exists a section sz : Y X (—e,14+¢) — E x (—e,1+4¢) such that s3 interpolates
smoothly between sy, so with C"—closeness along S’, i.e.

(1) s3|(—e, 0} = 31‘(_570]

(2) s3l[1,1+¢) = sof[1,1+¢)

(3) 839" x (—e,1+¢€) is d—close to both $1]S" x (—e,1+¢€), 82|95 X (—&,1+¢€)
in the C"—norm.

Proof. Let H; be the homotopy between si, so in the discussion preceding Lemma
6.18] Setting sh(x,r) = H,(x,r) for r € [0,1] furnishes a linear interpolation.
Smoothing slightly at the end-points, e.g. by choosing a smooth monotonically
increasing bijective function g : [0,1] — [0, 1], and setting s3(x,r) = H,.(z, g(r)) for
r € [0,1] gives the required s;.

We are now in a position to prove the stratified version of Theorem All
substratified spaces K C X below will be assumed to be tamely embedded below,
i.e. if K is non-compact, then the closure K is a deformation retract of a small
regular neighborhood.

Theorem 6.21. Let X be an abstractly stratified space equipped with a compatible
metric, E — X be a stratified bundle, and K C X be a relatively compact strat-
ified subspace of positive codimension. Let f € Strat J'5(Op K) be a C"—regular
formal section. Then for arbitrarily small € > 0, § > 0, there exist a stratified
diffeomorphism h : X — X with

11— Td]|co <6,

and a stratified holonomic section f € Strat J’(Op K) such that
(1) the image h(K) is contained in the domain of definition of the section f,

(2) |1 = f10p h(K)||co <&.
(3) f, flOp h(K) are normally e C"-close.
The same applies for Strat T, in place of Strat J .

Proof. The proof proceeds by induction on the depth (cf. Definition of X. If X
has depth one, it is a manifold, and Theorem furnishes the result.

Let S be the lowest stratum (i.e. the stratum of greatest depth) that K intersects.
We note that there might be more than one such minimal stratum S; of possibly
varying depths with K NS; # (), in which case we shall repeat the argument below
for each of these. For convenience of exposition, we assume there is a unique such S.
Let Kg = KNS. Then Kg is compact; else K would intersect a stratum of depth
lower than that of S, but there is none such.

Theorem [0.11] ensures the existence of a self-diffeomorphism hg of S supported in
a neighborhood of Kg = K NS and a holonomic section fs € Strat J'5(Op h(Kg))
satisfying the conclusions of the theorem, but only on S. Further, Corollary [6.17]
allows us to
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(1) extend hg to a stratified self-diffeomorphism h. of all of X supported in
Ng N OR\X(KS) N
(2) extend fg € Strat Ju(OpKg) to a stratified holonomic section f. €
Strat J5(Opx h(Kg)) defined on an open neighborhood Opy h(Kg) of
h(Ks) in X.
We may assume without loss of generality that Opy h(Kg) is the restriction of the
normal bundle Ng to Opg h(K).
Next, delete a (very) small closed neighborhood N,,(S) of S in X to obtain X7,
and let K1 = KN X; C X;. Then the depth of X is strictly less than X, and
induction may be applied to obtain

(1) A stratified self-diffeomorphism h; of Xi, supported in Opy, K such that
hy is §—close to the identity in the C° norm.
(2) a stratified holonomic section f; € Strat J5(Opy, K) defined on an open
neighborhood of h(K7) in X;.
such that

(1) the image hq (K1) is contained in the domain of definition of the section f,

(2) |11 = £10p ha (K1) <.
(3) f1, f|Opx, h(K1) are normally ¢ C"-close on X;.

Composing h; with a further C°—small stratified diffeomorphism ho supported
on A = Ny, (S) \ N,(S), we may assume that hy o hy and h. agree on A. Let h be
the stratified diffeomorphism obtained by pasting these two diffeomorphisms along
A. Note that h is C°—small, and hence lifts to give a bundle map from E|Opy K
to E|Opy h(K) covering h : Opx K — Opx h(K).

Choosing n in N, (S) sufficiently small, we may assume that the domain of the

extension f. given by the normal bundle to Opg h(K) constructed earlier in the
proof has normal fibers of diameter at least 2n. Thus, on the stratified ”annulus’
A" = (N3, (S) \ N,,(S)) N Opx h(K), we have two holonomic sections fe and fi.
(We are assuming here that the sections have been composed with the bundle map
covering h : Opy K — Opy h(K) described in the previous paragraph.)

Since 7 is small, and since both fe and ]?1 are normally C"—close to f on A’, they
are close to each other. Hence, using Corollary we can interpolate between
the sections ]?6|NW(S) and fi|(X\ Ny, (S)) to obtain a holonomic section f on all of
Opy K. Since 7 is small, all three conclusions of the theorem are satisfied by h and
f- O

)

6.3. Application: Immersions. A host of examples of open Diff —invariant re-
lations have been enumerated by Eliashberg-Mishachev [EMO01] in the manifold
context and the holonomic approximation theorem deduced for these:

(1) open manifold immersions,

(2) open manifold submersions,

(3) open manifold k-mersions (i.e. mappings of rank at least k),

(4) mappings with nondegenerate higher-order osculating spaces,

(5) mappings transversal to foliations, or more generally, to arbitrary distribu-
tions,

(6) construction of generating system of exact differential k—forms,

(7) symplectic and contact structures on open manifolds, etc.



h-PRINCIPLE FOR STRATIFIED SPACES 61

Most of these (in particular, immersions, submersions and k—mersions of open
manifolds) have natural potential generalizations to the stratified context, by re-
placing the use of Theorem by Theorem [6.21

Stratified Immersions: We illustrate the extra ingredient necessary over and
above [EMO02| [Gro86] by studying the sheaf of stratified immersions in this paper.
We postpone a more detailed treatment of applications to subsequent work. Here,
we shall prove a stratified analog of the Smale-Hirsch theorem [EM02, Chapter 8.2]

(see Theorem below).

Definition 6.22. Let X,Y be abstractly stratified spaces, and let tX and tY denote
the tangent microbundles to X andY respectively. A stratified immersion of X into
Y is a weakly controlled map i : X — Y such that the induced map iy : tX — tY is
a fiberwise stratified embedding of stratified spaces.

A stratified immersion ¢ : X — Y will be said to be of positive codimension, if the
following is true: for any stratum S of X, let S’ denote the unique stratum of Y such
that ¢(S) € S’. Then i(S) C S’ is an immersed submanifold of positive codimension.
Let Imm*(X,Y") denote the quasitopological space of positive codimension stratified
immersions of a stratified space X in a stratified space Y such that the stratified
immersions are of configuration c.

Given stratified spaces (Y,¥’) and (X, X), and a configuration ¢ (cf. Definition
[6.3), we may construct a sheaf Imm‘(—,Y) on X by defining, for each element
U € Str(X,X) of the stratified site (Definition [3.6)),

Imm®(—,Y)(U) = Imm“(U,Y)

where U, being an open subset in a stratum-closure of X, is equipped with the
induced stratification from X. The restriction maps are defined simply by restriction
of the underlying map of an immersion to a smaller subset.

For any stratum S € ¥, let Immg(—,Y’) denote the sheaf of positive codimension
stratified immersions of elements of the stratified site of the stratified space (S, SNY)
as in Definition Let Immg(—,Y) := igImmg(—,Y’) denote its restriction to
the open stratum S.

Note that Imm‘(—,Y) is a stratified subsheaf of Maps(—,Y"), where Maps(—,Y)
is identified with the sheaf of sections of the surjective map P : X x Y — X.
P is an example of a stratumwise bundle (Definition [2.20)), but not a stratified
bundle (Example . Nevertheless, by Remark we may describe sections
of the Gromov diagonal construction Maps(—,Y)* over an element of the site
U € Str(X,Y) in terms of germs of maps o : (¢(U),U) — Y. For every p € U,
we may consider o[t,U : t,U — Y as a map t,U — t,(,)Y. In this process, we
can identify sections of Maps(—,Y)* over U as microbundle morphisms tU — tY’
covering amap U — Y.

Definition 6.23. A stratified formal immersion of X into Y is a pair (F, f) con-
sisting of

(1) A weakly controlled map f: X =Y,

(2) A fiber-preserving microbundle morphism F : tX — tY,
such that F' covers f, and F is a fiberwise stratified embedding.

It follows from the discussion above that sections of the Gromov diagonal con-
struction Imm*(—,Y)* over U € Str(X, %) can be identified with stratified formal
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immersions (F, f) of U into Y, where f : X — Y is of configuration ¢. The canoni-
cal inclusion Imm*(—,Y) < Imm*(—,Y)* over U is given by sending a stratified
(holonomic) immersion i : X — Y to the stratified formal immersion (i.,?) where
i, : tX — tY is given by the restriction of i x i: X x X — Y X Y to the diagonal.

Theorem 6.24. For any stratified spaces (X, %) and (Y,Y'), and configuration c
as above, the stratified continuous sheaf Imm®(—,Y) on X satisfies the parametric
h—principle.

Proof. By Theorem it suffices to check flexibility of H%. Let S < L be strata
in X and let S" = ¢(S), L’ = ¢(L) be the strata in Y corresponding to S, L through
the configuration ¢. Let tg denote the microtangent bundle to S in L. Let Ay,
(resp. Br/) denote the link of S (resp. S’) in L (resp. L), and {c} C cAy (resp.
{c'} C ¢By/) denote the cone points of the respective normal cones. Then the
microtangent bundle ts ;, of S in L is of the form

ts,, =TS ® Ng,r,

where T'S is the tangent bundle to S, and Ng 1, is a cAr—bundle over S. We refer
to Ng 1 as the normal cone bundle of S in L. The morphism

res§ : 5 Imm$(—,Y) = Immg(—,Y)

is given by restricting a germ of a stratified immersion defined on a neighborhood
Ng, of Sin L, to the zero section S C Ng . Let U C S be a chart such that Ng 1,
trivializes as U x cAp, over U. Then, elements of i Imm%(U,Y’) consist of germs of
stratified immersions

0: (UxcAL,Ux{c}) =Y
such that p|U x {c} is an immersion of U in S’. Observe that, for every p € U,

lipyxea, (AL, {c}) = (cBr {c'}) C Y

is a germ of a stratified immersion at the cone point ¢/. Here, the cone cBy/ is
determined by the configuration ¢. In other words, the configuration ¢ induces a
germ of a stratified embedding at the cone point. Indeed, the microtangent space
t.(cAL) to the cone cAy at the cone point ¢ is a germ of a neighborhood of {¢} in
cAyp. The latter is germinally homeomorphic to cAy, itself. Let Emb.(cAy,cBr/)
denote the quasitopological space of germs of such embeddings. Thus, we have an
induced map @, given by

(I)gp U — Embc(CAlnCBL’)v (I)<P(p) = w‘{p}chlg
Therefore, ¢ — (0| x{c}, Py) furnishes a homeomorphism:
i Imm-(U,Y) — Imm(U, ") x Maps(U, Emb.(cAL, cBr/))

This homeomorphism is natural with respect to passing to smaller open subsets
V C U. It commutes with projections to Imm(U, S’) under restriction maps res5 on
the left-hand side. It also commutes with the canonical projection to the first factor
on the right-hand side. Therefore, we have an isomorphism of continuous sheaves
over U C S,

i Imm$(—,Y) = Imm(—, S") x if; Maps(—, Emb.(cAr, cBr/)).

Under this isomorphism, resg is equivalent to the projection to the first factor of
the product sheaf on the right-hand side. Therefore, as in Proposition

it HE = PyImm(—, S’) x i}y Maps(—, Emb.(cAr, cBr/))
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By Gromov’s Open Extension Theorem [Gro86l p. 86], Imm(—, S’) is a flexible
sheaf on S since dim(S) < dim(S’) by the positive-codimension hypothesis. Thus,
the arguments from Proposition apply, and we conclude that H% is a flexible
sheaf on S.

Finally, for every stratum .S of X, Imm§(—,Y) = Imm(—, ¢(5)) is a flexible sheaf
on S once again by the Open Extension Theorem [Gro86l p. 86]. Therefore, Imm*
is both stratumwise flexible, and infinitesimally flexible across strata. By Theorem

Imm® satisfies the parametric h—principle. O
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